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ABSTRACT

This paper presents a method for enhancing a dominant target
source that is close to sensors, and suppressing other interferences.
The enhancement is performed blindly, i.e. without knowing the
number of total sources or information about each source, such
as position and active time. We consider a general case where the
number of sources is larger than the number of sensors. We employ
a two-stage processing technique where a spatial filter is first em-
ployed in each frequency bin and time-frequency masking is then
used to improve the performance further. To obtain the spatial fil-
ter we employ independent component analysis and then select the
component of the target source. Time-frequency masks in the sec-
ond stage are obtained by calculating the angle between the basis
vector corresponding to the target source and a sample vector. The
experimental results for a simulated cocktail party situation were
very encouraging.

1. INTRODUCTION

The technique for estimating individual source components from
their mixtures at sensors is known as blind source separation (BSS)
[1]. In some applications such as brain imaging or wireless com-
munications, it makes sense to extract as many source components
as possible, because many sources are equally important. How-
ever, in audio applications such as speech enhancement, the sig-
nificance of each source is not necessarily equal. We often want
to extract only one source that is close to sensors, has a dominant
power, and/or has interesting features.

This paper presents a method for extracting a source signal of
interest and suppressing other interferences blindly. Let us formu-
late the task. Suppose that a target source s1 and other interference
sources sk, k=2, . . . , N are convolutively mixed and observed at
M sensors

xj(t) =
∑N

k=1

∑
l
hjk(l) sk(t − l), j =1, . . . , M, (1)

where hjk(l) represents the impulse response from source k to
sensor j. The goal is to have an output signal

y1(t) =
∑

l
hJ1(l) s1(t − l) (2)

which is the component of s1 measured at sensor J . The task
should be performed only with the M observed signals. The num-
ber of sources N is unknown and may be larger than M .

The first problem is how to extract a target source s1 blindly.
Even if N could be larger than M , independent component analy-
sis (ICA) [2] with an N =M assumption produces M components
which maximize an ICA criterion such as non-Gaussianity. We as-
sume that a target source s1 is non-Gaussian, close to sensors, and

dominant in the mixtures. Therefore, it is expected that one of the
M components corresponds to s1 whose ICA criterion is high.

We apply ICA in the time-frequency domain. The reason is
that it is efficient and also it fits time-frequency masking, which
will be discussed in the next paragraph. An additional operation
is the selection of the s1 component in every frequency bin. It has
been reported that the selection of a component with maximum
kurtosis works well when the target is speech and interferences are
babble source [3]. However, we consider a case where interfer-
ences are also speech. Thus, we exploit the information of basis
vectors produced by ICA. In Sec. 2.3, we propose a new idea that
improves our previously reported methods [4, 5].

The next issue is the fact that some interference still remains
in the target component in a case where N > M . Post filtering
[3, 6] can be used to reduce such residuals. However, it needs ad-
ditional adaptation where the step size should be controlled based
on the short-term power of the target. Another approach is time-
frequency masking [7–11], which is effective for sources having
sparseness in the time-frequency domain, such as speech. The per-
formance of time-frequency masking depends on how well we can
specify the time-frequency slots where a target source is active.
A simple way to specify such slots is to calculate the phase and/or
amplitude difference of sensor observations [7, 8]. In [10], the out-
put of a beamformer is also used to improve mask accuracy. We
propose a new criterion for specifying masks in Sec. 2.5. It is based
on how close a sample vector is to the basis vector corresponding
to a target. The closeness is calculated in a whitened space where
the basis vectors corresponding to interferences are expected to be
far from that of the target.

The next section describes our proposed method. Section 3
shows experimental results, and Section 4 concludes this paper.

2. THE PROPOSED METHOD

2.1. Frequency domain operations

Figure 1 shows the flow of the method proposed here. First, time-
domain signals xj(t) sampled at frequency fs are converted into
frequency-domain time-series signals xj(f, τ) with an L-point short-
time Fourier transform (STFT):

xj(f, τ) =
∑L/2−1

r=−L/2
xj(τ + r) win(r) e−j2πfr, (3)

where f = 0, 1
L

fs, . . . , L−1
L

fs is a frequency, win(r) is a win-
dow that tapers smoothly to zero at each end, such as a Hanning
window 1

2
(1 + cos 2πr

L
), and τ is a new index representing time.

The remaining operations are performed in the frequency do-
main. There are two advantages to this. First, the convolutive
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Fig. 1. Flow of the proposed method

mixtures in (1) can be approximated as instantaneous mixtures in
each frequency bin:

xj(f, τ) =
∑N

k=1
hjk(f)sk(f, τ), (4)

where hjk(f) is the frequency response from source k to sensor j,
and sk(f, τ) is a frequency-domain time-series signal of sk(t) ob-
tained by the same operation as (3). The frequency-domain coun-
terpart of (2) is

y1(f, τ) = hJ1(f)s1(f, τ), (5)

where J should be the same for all frequency bins f . The second
advantage is that the sparseness of a source signal becomes promi-
nent in the time-frequency domain if the source is colored such as
speech. The possibility of sk(f, τ) being close to zero is much
higher than that of sk(t).

Through several operations, which will be discussed in the fol-
lowing subsections, we have an output ỹ1(f, τ), which should be
close to (5) in each frequency bin. At the end of the flow, we have
an output y1(t) by an inverse STFT (ISTFT) :

y1(τ + r) =
1

L·win(r)

∑L−1

l=0
ỹ1(

l

L
fs, τ) exp(j 2π

l

L
fsr).

2.2. Independent component analysis (ICA)

Let us have a vector notation of the mixing model (4) :

x(f, τ) =
∑N

k=1
hk(f)sk(f, τ), (6)

where x = [x1, . . . , xM ]T is a sample vector and hk = [h1k, . . . ,
hMk]T is the vector of frequency responses from source sk to all
sensors. Independent component analysis (ICA) is used as a first
step to identify the vector h1 of a dominant source s1.

Even though the number of independent components N may
be larger than the number of sensors M , we employ ICA by as-
suming that N is equal to M :

y(f, τ) = W(f)x(f, τ),

where y = [y1, . . . , yM ]T is a vector of separated signals and
W = [w1, . . . ,wM ]H is an M ×M separation matrix. In the ex-
periments shown in Sec. 3, we calculated W by using a complex-
valued version of FastICA [2], and improved it further by using
InfoMax [12] combined with the natural gradient [13] whose non-
linear function is based on the polar coordinate [14].

By calculating the inverse of W

[a1, · · · , aM ] = W−1, ai = [a1i, . . . , aMi]
T , (7)

we have the decomposition of x

x(f, τ) =
∑M

i=1
ai(f)yi(f, τ), (8)

where ai is a basis vector. Since s1 is assumed to be a dominant
non-Gaussian source, it is expected that one of y1, . . . , yM corre-
sponds to s1 and therefore one of a1, . . . , aM corresponds to h1.

2.3. Permutation

The next operation is to find i for each frequency f such that ai(f)
corresponds to h1(f). This is considered to be the permutation
problem of frequency-domain BSS. Integrating the basis vector
ai(f) and signal envelope |yi(f, τ)| information solves the prob-
lem effectively [4]. We also employ this approach here.

In the rest of this subsection, we discuss how to exploit the
basis vector ai(f). The former methods estimate geometric in-
formation (direction [4, 5] and distance [5]) about the sources by
selecting two elements from ai(f), and then cluster the directions
or the distances to solve the permutation problem. However, the
directions and distances are clustered separately, and such estima-
tions depend on the selection of two elements. Consequently, dif-
ferent kinds of estimations by different pairs of elements need to
be reconciled. To solve this issue, we here propose a new method
that considers all the elements of ai(f) simultaneously.

The new idea is to normalize all basis vectors ai(f), i =
1, . . . , M , for all frequency bins f = 0, 1

L
fs, . . . , L−1

L
fs such

that they form clusters, each of which corresponds to each source.
The normalization is performed by selecting a reference sensor J
and calculating

āji(f) ← |aji(f)| exp

[
j
arg[aji(f)/aJi(f)]

4fc−1d

]
(9)

where c is the propagation velocity and d is the maximum distance
between the reference sensor J and a sensor ∀j ∈ {1, . . . , M}.
The rationale of this operation will be explained afterwards. Then,
we apply unit-norm normalization

āi(f) ← āi(f) / ||āi(f)|| (10)

for āi(f) = [ā1i(f), . . . , āMi(f)]T . The next step is to find M
clusters C1, . . . , CM formed by normalized vectors āi(f). The
centroid ck of a cluster Ck is calculated by

ck ← ∑
ā∈Ck

ā/|Ck|, ck ← ck/||ck||,
where |Ck| is the number of vectors in Ck. The criterion of clus-
tering is to minimize the total sum J of the squared distances be-
tween cluster members and their centroid

J =
∑M

k=1
Jk, Jk =

∑
ā∈Ck

||ā − ck||2. (11)

This minimization can be performed efficiently with the k-means
clustering algorithm [15].

This paragraph explains the reason why normalized basis vec-
tors āi(f) form a cluster for a source. Let us approximate the
multi-path mixing model (1) by using a direct-path mixing model

hjk(f) =
q(f)

djk
exp

[
j 2πfc−1(djk − dJk)

]
, (12)

where djk > 0 is the distance between source k and sensor j. We
assume that the attenuation q(f)/djk depends on both the distance
and a frequency-dependent constant q(f) > 0, and that the delay
(djk−dJk)/c depends on the distance normalized with the refer-
ence sensor J . By considering the permutation and scaling ambi-
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guity of ICA, a basis vector and its elements are represented as

ai = αihk, aji = αihjk, (13)

where αi is a scalar representing the scaling ambiguity, and index
k that may be different from index i represents the permutation
ambiguity. Substituting (12) and (13) into (9) and (10) yields

āji(f) =
1

djkD
exp

[
j

π

2

(djk − dJk)

d

]
, D =

√∑M

i=1

1

dik
2

which is independent of frequency, and dependent only on the po-
sitions of the sources and sensors. From the fact that maxj,k |djk−
dJk| ≤ d, an inequality holds:

−π/2 ≤ arg[āji(f)] ≤ π/2.

This property is important for the distance measure (11), since |ā−
ā′| increases monotonically as | arg(ā) − arg(ā′)| increases.

After we have found M clusters C1, . . . , CM , we need to
identify a cluster that corresponds to a dominant source s1. Since
we assume that s1 is close to the sensors, the mixing model (12)
is more valid for s1 than for the other sources. Therefore, we de-
cide that a cluster that has the minimum variance σ2

k = Jk/|Ck|
corresponds to s1.

2.4. Scaling and Spatial filter

Here the columns of (7) have been permuted such that a1(f) cor-
responds to h1(f). Then, we solve the scaling ambiguity in (8) :

aiyi(τ) = (αiai)(yi(τ)/αi), for any complex scalar αi.

This is easily solved by

ai ← ai/aJi or equivalently wi ← [W−1]Jiwi

to make aJi = 1 for a selected sensor J . The reason can be seen
by comparing the h1 term in (6) and the a1 term in (8), and taking
(5) into consideration

h1s1(τ) ≈ a1y1(τ) = a1hJ1s1(τ) ⇔ h1 ≈ a1hJ1.

Now the permutation and the scaling ambiguities are solved. The
extraction of s1 by a spatial filter is performed by

y1(τ) = wH
1 x(τ) (14)

= wH
1 h1s1(τ) +

∑N

k=2
wH

1 hksk(τ). (15)

If N ≤ M , w1 satisfies wH
1 hk = 0, ∀k ∈ {2, . . . , N} and makes

the second term zero. However, we assume that the number of
sources N is generally larger than M . In this case, there exists a
set K ⊆ {2, . . . , N} such that wH

1 hk �= 0, ∀k ∈ K. Thus, y1(τ)
contains an unwanted residual

∑
k∈K

wH
1 hksk(τ).

2.5. Time-frequency masking

The purpose here is to have another output ỹ1(τ) that contains
less power of the residual

∑
k∈K

wH
1 hksk(τ) than y1(τ). This is

performed by time-frequency masking

ỹ1(f, τ) = M(f, τ) · y1(f, τ), (16)

where 0 ≤ M(f, τ) ≤ 1 is a mask specified for each time-
frequency slot (f, τ). We specify masks based on the angle θ1(f, τ)
between a1(f) and x(f, τ) calculated in the space transformed
by a whitening matrix V(f) = R−1/2, R = 〈x(τ)x(τ)H〉τ .
Let z(f, τ) = V(f)x(f, τ) be whitened samples and b1(f) =
V(f)a1(f) be the basis vector of y1(τ) in the whitened space.
The angle is calculated by

θ1(f, τ) = cos−1 |bH
1 (f) · z(f, τ)|

||b1(f)|| · ||z(f, τ)|| (17)
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Fig. 2. Experimental conditions

Fig. 3. Masking functions: parameters (θT , g) = (π/5, 20) and
(π/3, 16) were used for 2- and 3-microphone cases, respectively

for each time-frequency slot. Then, we calculate a mask by using
a logistic function

M(θ1(f, τ)) = 1/(1 + eg(θ1−θT )), (18)

where θT and g are parameters specifying the transition point and
its steepness, respectively. The smaller θT , the less power of the
residual appears in ỹ1 but the more musical noises sound in y1.

The effectiveness of the above operation depends on the sparse-
ness of sources. If we assume that the possibility of sk(f, τ) being
close to zero is very high, (6) can be approximated as

x(f, τ) ≈ hk(f)sk(f, τ), k ∈ {1, . . . , N}, (19)

where k depends on each time-frequency slot (f, τ). Let us con-
sider the whitened-space counterpart of (19), with distinguishing
the cases where s1 is the only active source and other cases:

z(τ) ≈ Vh1s1(τ) ≈ Va1y1(τ) (20)

z(τ) ≈ ∑N

k=2
Vhksk(τ). (21)

If the number of sources N is equal to or less than the number
of sensors M , vectors Vhk in whitened space are orthogonal to
each other. Even if N > M , the vector b1 = Va1 ≈ Vh1

of a dominant source s1 tends to have large angles with the other
vectors Vhk, k = 2, . . . , N . Therefore, calculating the angle (17)
provides information about whether or not s1 is the only active
source at a time-frequency slot (f, τ).
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Fig. 4. SIR improvements for various input SIRs

3. EXPERIMENTS

We performed experiments to examine the effectiveness of the pro-
posed method. We measured impulse responses under the condi-
tions shown in Fig. 2. The speaker positions simulated a cock-
tail party situation. Mixtures at microphones were made by con-
volving the impulse responses and 6-second speeches sampled at
8 kHz. For each setup, we selected one of the three speakers (a,
b, c) as a dominant target source, and the remaining two speak-
ers were kept silent. The six speakers away from the microphones
were used as interferences for every setup. We set parameters of
(18) as shown in Fig. 3, which were empirically proved to be good.

Figure 4 shows experimental results for various input SIRs,
which were controlled by multiplying a positive constant for all in-
terferences equally. The vertical axis shows the SIR improvements
obtained solely by using a spatial filter made by ICA, and by us-
ing the combination of the spatial filter and time-frequency (T-F)
masking. The frame size L of STFT (3) was 1024 (128 ms). SIR
improvements depend heavily on the position of the target source.
Position a was good for enhancement, whereas c was a hard po-
sition as a lot of interferences came from the similar directions.
The improvement realized by using a spatial filter was almost the
same independent of input SIRs. This means that ICA and the
following permutation alignment worked similarly well for vari-
ous input SIRs. In contrast, the further improvement achieved by
time-frequency masking depends on the input SIRs. This is why
the vectors Vhk of interferences in the whitened space approaches
that Vh1 of a target source, as the interference power increases.
With the masking functions shown in Fig. 3, musical noises hardly
sound in the output signals, especially 3-microphone cases.

4. CONCLUSION

We have presented a method for extracting a dominant target source
and suppressing interferences. The process of ICA and follow-
ing permutation alignment extracts the target source by a spatial
filter, and estimates the basis vector corresponding to the target
source. The performance depends on the accuracy of the permuta-
tion alignment, which has been improved by the new idea shown
in subsection 2.3. Time-frequency masking in the second stage re-
duces the power of the residual caused by the limitations of a spa-
tial filter. It exploits the sparseness of sources. The angle between
the basis vector corresponding to the target source and a sample
vector gives information about whether or not the target is active.

The experiments showed good results for extracting a dominant
source out from six interferences only with 2 or 3 microphones, in
a room whose reverberation time was 130 ms.

5. REFERENCES

[1] S. Haykin, Ed., Unsupervised Adaptive Filtering (Volume I: Blind
Source Separation), John Wiley & Sons, 2000.

[2] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component
Analysis, John Wiley & Sons, 2001.

[3] S. Y. Low, R. Togneri, and S. Nordholm, “Spatio-temporal process-
ing for distant speech recognition,” in Proc. ICASSP 2004, May
2004, vol. I, pp. 1001–1004.

[4] H. Sawada, R. Mukai, S. Araki, and S. Makino, “A robust and precise
method for solving the permutation problem of frequency-domain
blind source separation,” IEEE Trans. Speech Audio Processing, vol.
12, pp. 530–538, Sept. 2004.

[5] R. Mukai, H. Sawada, S. Araki, and S. Makino, “Frequency domain
blind source separation using small and large spacing sensor pairs,”
in Proc. ISCAS 2004, May 2004, vol. V, pp. 1–4.

[6] R. Mukai, S. Araki, H. Sawada, and S. Makino, “Removal of residual
crosstalk components in blind source separation using LMS filters,”
in Proc. NNSP 2002, Sept. 2002, pp. 435–444.

[7] M. Aoki, M. Okamoto, S. Aoki, H. Matsui, T. Sakurai, and
Y. Kaneda, “Sound source segregation based on estimating incident
angle of each frequency component of input signals acquired by mul-
tiple microphones,” Acoustical Science and Technology, vol. 22, no.
2, pp. 149–157, 2001.

[8] S. Rickard, R. Balan, and J. Rosca, “Real-time time-frequency based
blind source separation,” in Proc. ICA2001, Dec. 2001, pp. 651–656.

[9] S. Araki, S. Makino, A. Blin, R. Mukai, and H. Sawada, “Under-
determined blind separation for speech in real environments with
sparseness and ICA,” in Proc. ICASSP 2004, May 2004, vol. III,
pp. 881–884.

[10] N. Roman and D. Wang, “Binaural sound segregation for multisource
reverberant environments,” in Proc. ICASSP 2004, May 2004, vol. II,
pp. 373–376.

[11] D. Wang, “On ideal binary mask as the computational goal of audi-
tory scene analysis,” in Speech Separation by Humans and Machines,
P. Divenyi, Ed., pp. 181–197. Kluwer Academic Publishers, 2004.

[12] A. Bell and T. Sejnowski, “An information-maximization approach
to blind separation and blind deconvolution,” Neural Computation,
vol. 7, no. 6, pp. 1129–1159, 1995.

[13] S. Amari, “Natural gradient works efficiently in learning,” Neural
Computation, vol. 10, no. 2, pp. 251–276, 1998.

[14] H. Sawada, R. Mukai, S. Araki, and S. Makino, “Polar coordinate
based nonlinear function for frequency domain blind source separa-
tion,” IEICE Trans. Fundamentals, vol. E86-A, no. 3, pp. 590–596,
Mar. 2003.

[15] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, Wiley
Interscience, 2nd edition, 2000.

III - 64

➡ ➠


