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ABSTRACT

This paper describes a microphone system that separates a

target sound from other noise arriving in a single direction

when the target cannot, therefore, be separated by

directivity control. Microphones are arranged in a line

toward the sources to form null sensitivity points at certain

distances from the system. The null points exclude non-

targeted sound sources on the basis of weighting

coefficients for microphone outputs determined by blind

source separation. The separation problem is thereby

simplified into the instantaneous separation by adjusting

the time-delays for microphone outputs. The system uses a

direct (i.e. non-iterative) algorithm for blind separation

based on second-order statistics, assuming that all sources

are non-stationary signals. Simulations show that the 2-

microphone system separates a target sound with

separability of more than 40dB in the 2-source problem,

and 25dB in the 3-source problem.

1. INTRODUCTION

A microphone system is investigated that separates a

target sound from background noise [1]. A target sound

arriving in a different direction from the noise can be

separated effectively by a microphone system with sharp

directivity. If, however, the sound arrives in the same

direction as a noise source, such signal processing

technology as blind source separation is required to

separate it. This paper deals with the separation of

unidirectional sounds. To solve the problem, the

microphones are arranged in a line toward the sources, as

shown in Fig.1. The time-delay in the output of

microphone-1 in Fig.1 is adjusted to the time of the

propagation of sound by inter-microphone distance, such

that the signals of two outputs are in phase. This provides

the important advantage that only the instantaneous

mixing model needs to be considered.

In the blind separation of instantaneous signal

mixtures, an N-dimensional measured signal x(t)=[x1(t),

,xN(t)]
T
is assumed to be observed at each time point t,

such that

x(t) = As(t) , (1)

where A is an unknown matrix of N
2
coefficient aij, and

s(t)=[s1(t), ,sN(t)]
T
is an N-dimensional unknown

stochastic, independent source signal. The measured

signals are processed by a linear operation where

y(t) = Cx(t) , (2)

in which C is a separation matrix of N
2
coefficient cij, and

y(t)=[y1(t), ,yN(t)]
T
is an N-dimensional output signal (an

estimate of the source signal s(t)). The diagonal elements

of C are set to 1 in this paper.

Many studies have considered the problem of blind

separation of an instantaneous mixture of sources. Most of

these use higher-order statistics to satisfy the statistical

independence of the elements of output signal y(t) [2].

Other approaches involve the use of second-order

statistics on the assumption that the sources are non-

stationary signals [3]. It is well known that the single-time

decorrelation of elements of the output signal is

insufficient to determine separation matrix C uniquely.

Decorrelation at multiple points in time, however, adds

other constraints that make it possible to determine C

uniquely, except in the case of permutations [4]. These

approaches have the advantage over the methods of

Fig.1 Block diagram of the 2-microphone system
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higher-order statistics of providing stable statistical

estimation and a smaller computational burden.

This paper describes the principles of the new

microphone system and proposes a new algorithm for

blind source separation using second-order statistics [5].

In contrast to almost all existing algorithms of blind

source separation, which use an iterative algorithm to

determine C, the new algorithm uses a direct (i.e. non-

iterative) procedure. There is, therefore, no need to

consider the stability and convergence of the algorithm.

2. SEPARATION MECHANISM OF THE SYSTEM

We assume that each source produces a wave that spreads

spherically outward. The wave does not change shape as it

spreads out, but its amplitude diminishes in proportion to

the propagation distance. Since all sources and

microphones lie on the same line, as shown in Fig.1, those

positions can be represented by a 1-dimensional

coordinate. We then denote the position of a source s(t) as

x, the positions of two microphones as x1 and x2
(x< x1< x2), and the observed signals of s(t) at x1 and x2 as
f1(x, t) and f2(x, t), respectively. From these assumptions,
f1(x, t) is given by

(3)

In (3), t is the time-delay of sound propagation between
the source and microphone at x2, because the steady time-
delay in the system is properly adjusted as described in the

preceding section. f2(x, t) is also given by

(4)

Then a process, which outputs a weighted sum

can generate a null point at

(5)

and suppress the source signal at that point.

Another process, which outputs a weighted sum

c21f1(x, t) + f2(x, t), can also suppress the source at the
point

(6)

The system controls coefficient c12 or c21 to produce a null

point in one source position and picks up the other source

signal when the number of sources is 2. The next section

gives a definite algorithm for solving coefficients c12 and

c21 automatically.

3. NEW SEPARATION ALGORITHM

A direct decorrelation method exists for the 2-source

separation problem [6], which can solve a pair of non-

linear simultaneous equations to realize the decorrelation

at two time points. While this method avoids the stability

problem of iterative learning, it is sensitive to the

estimation instabilities of the correlation functions of the

measured signal because it is based only on the estimated

values of correlation functions at two time points. Another

problem with this method is that the solution at a given

time often becomes a permutated solution of the previous

time. The new algorithm can decorrelate the elements of

the output signal at more than two time points. It is a two-

stage algorithm. In the first stage, linear multiple

regression coefficients among correlation functions of the

measured signals are estimated at multiple points in time.

The elements of the separation matrix are calculated to

form the coefficients in the second stage.

We assume N=2 in this paper. The output signals are
then given by

(7)

The cross-correlation between y1(t) and y2(t) is written by

(8)

where

(9)

and rx
(11)
(t) and rx

(22)
(t) are simply denoted by rx

(1)
(t) and

rx
(2)
(t), respectively. The decorrelation of the output signal

is realized by c12 and c21, satisfying

(10)

Eq. (10) is a non-linear equation in the variables c12 and

c21, but a linear equation in the variables rx
(1)
(t), rx

(2)
(t) and

rx
(12)
(t). From (10), we obtain the following linear

relationship between the correlation functions:

(11)

The first stage of the proposed algorithm applies the

following linear multiple regression model to (11) :

(12)

and solves the regression coefficient w1 and w2 at multiple

points in time t1, t2,…, tm (e.g. ti=t-(i-1)T, T:time interval):

(13)

x =
c12x1 +x2
1 + c12

,

x =
x1 + c21x2
1 + c 21

.

rx
(12) (t) = -

c21
1 + c12c21

rx
(1)(t) -

c12
1+ c12c21

rx
(2) (t) .

y1(t) = x1 (t) + c12x2 (t)
y2 (t) = c21x1 (t) + x2 (t) .

rx
(1)(t1) rx

(2) (t1)

rx
(1)(t2) rx

(2) (t2)

. .

. .

rx
(1)(tm) rx

(2) (tm)

Ê

Ë

Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜

w1
w2

Ê

Ë
Á

ˆ

¯
˜ = -

rx
(12) (t1)

rx
(12 )(t2)

.

.

rx
(12 )(tm)

Ê

Ë

Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜

.

rx
(12) (t) = -w1rx

(1) (t) -w2rx
(2) (t) ,

c21rx
(1)(t) + c12rx

(2) (t) + (1 + c12c21)rx
(12)(t) = 0 .

ry
(12) (t) ≡ E y1(t)y2 (t)[ ]

= c21rx
(1)(t) + c12rx

(2) (t) + (1 + c12c21)rx
(12)(t) ,

rx
(kl )(t) ≡ E xk (t)xl (t)[ ] ,

f1(x, t) =
1

x1 -x
s(t -t ) .

f 2(x, t ) =
1

x2 -x
s(t -t ) .

f1(x, t) + c12 f 2(x, t) =
1

x1 -x
+

c12
x2 -x

Ê

Ë
Á

ˆ

¯
˜s(t -t )

=
c12x1 +x2 - (1 + c12)x

(x1 -x )(x 2 -x)
s(t -t ) ,
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The coefficients can be solved by least square estimation.

Then, from the non-linear equations

the second stage gives the two solutions of c12 and c21 as

(14)

and

(15)

It should be noted that Eqs. (14) and (15) are the

alternative permutations.

4. PERMUTATION CONTROL

Permutation is one of the drawbacks of blind source

separation. There are some methods to solve the problem

by controlling the directivity pattern of the microphone

array [7]. This paper proposes a different method to

control permutation based on the distance between the

null point and the microphones.

By substituting (1) for (2), we obtain

(16)

where

(17)

Thus, according to Fig.1, we obtain

(18)

From (18), one solution is obtained when

(19)

The other solution is obtained when

(20)

Since 0<l1<l2 and k>0, if

(21)

it follows that s1(t) is separated into y1(t) and s2(t) into

y2(t). The permutation problem can, therefore, be solved

by always picking up the solution that satisfies (21),.

5. SEPARATION EXPERIMENTS

The 2-microphone, 2-output system was evaluated using

experiments that involved the 2-source and 3-source

problems.

5.1. Separability measure

From (16), if s1(t) is mainly separated into y1(t) and s2(t)

into y2(t), the separated signals are b11s1(t) and b22s2(t). In

this case, b12s2(t) and b21s1(t) can be considered as noise

for b11s1(t) and b22s2(t), respectively. Then, S/N ratios (dB)

in y1(t) and y2(t) are given by

We thus define separability Sep for the 2-source problem

as

(22)

If s1(t) is mainly separated into y2(t) and s2(t) into y1(t), Sep
is defined as the negative of the right-hand side of (22).

In the 3-source problem, the output signal is

described as

(23)

If s1(t) is mainly separated into y1(t), the S/N ratio is given

by

Then, we define Sepij, the separability of si(t) mainly

separated into yj(t) as

(24)

5.2. Outline of the experiments

The 2-source experiments were performed using the

system shown in Fig.1, in which the measured signal was

generated according to (1). We selected l1=2.0, l2=3.0 and

k=0.5. Three algorithms were evaluated by average

separability in 30 experiments, in which source signals

were all combinations of two out of six speech signals,

consisting of one set each of English male and female

speech and 2 each of Japanese male and female speech.

The length of all speech signals was 20 seconds. The

sampling frequency and quantization accuracy were

44.1kHz and 16 bits, respectively.

The proposed algorithm was compared with the

conventional direct algorithm [6] and iterative algorithm

[1], which minimize the following objective function by

the Simplex method:

c12 =
1+ 1- 4w1w2

2w1
, c21 =

1+ 1- 4w1w2
2w2

c12 =
1- 1 - 4w1w2

2w1
, c21 =

1 - 1- 4w1w2
2w2

.

y1(t) = b11s1(t) + b12s2 (t)
y2 (t) = b21s1(t) + b22s2 (t)

b11 = a11 + c12a21 , b12 = a12 + c12a22
b21 = c21a11 + a21, b22 = c21a21 + a22 .

y1(t) =
1

l1
+

c12
l1 + k

Ê

Ë
Á

ˆ

¯
˜s1 (t) +

1

l2
+

c12
l 2 + k

Ê

Ë
Á

ˆ

¯
˜s2 (t)

y2 (t) =
c21
l1
+

1

l1 + k

Ê

Ë
Á

ˆ

¯
˜s1(t) +

c21
l2

+
1

l2 + k

Ê

Ë
Á

ˆ

¯
˜s2 (t) .

l1 = -
c21

1 + c21
k, l2 = -

1

1+ c12
k .

l1 = -
1

1 + c12
k, l2 = -

c21
1 + c21

k .

-
1

1+ c12
> -

c21
1 + c21

,

10log10
E b11s1 (t)( )2[ ]
E b12s2 (t)( )2[ ]

= 20 log10
b11
b12

+ 10log10
E s1 (t)( )2[ ]
E s2(t)( )2[ ]

10log10
E b22s2 (t)( )2[ ]
E b21s1 (t)( )2[ ]

= 20 log10
b22
b21

+ 10log10
E s2(t)( )2[ ]
E s1 (t)( )2[ ]

.

Sep ≡ 10 ¥ log10
b11
b12

+ log10
b22
b21

Ê

Ë
Á

ˆ

¯
˜ .

10log10
E b11s1 (t)( )2[ ]

E b12s2 (t) + b13s3(t)( )2[ ]
.

c21
1+ c12c21

= w1 ,
c12

1 + c12c21
= w2 ,

y1(t) = b11s1(t) + b12s2 (t) + b13s3 (t)
y2 (t) = b21s1(t) + b22s2 (t) + b23s3 (t) .

Sepij = 20log10
bij

(k< j)»(k> j )
Â bik

.
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(25)

To estimate correlation functions, each speech signal was

divided into time blocks. In this kind of case, the length of

the block may influence the performance of the algorithm.

We selected a block size of 8,192 samples (approximately

186ms) because this produced the best results in

preliminary experiments using the iterative algorithm,

Fig.2 shows the experimental results where “m” of

“New-m” corresponds to “m” in (13). The conventional

algorithm (“Old” in Fig.2) did not produce good results

mainly due to the permutation problem. Permutation

control improved the performance of the new

algorithm (for example, the 32.1dB of “New-2” rises

to 32.9 dB). It was remarkably effective with the

conventional method, where the separability was raised

to the level of “New-2”.

We also performed 3-source experiments with the

new algorithm. The 120 experiments in total all

consisted of combinations of three out of the above-

mentioned 6 speech signals. In addition to the

notations in 2-source experiments, we denote the

distance between source s3(t) and the microphone

“Mic-1” as l3. The separation performance in this case

strongly depended on the arrangement of sources. We

therefore calculated the average values of Sep11 and

Sep32 of (24), changing l2 from 2.25 to 2.8, with l1=2.0,

l3=3.0 and k=0.5. The result is shown in Fig.3, where

either s1(t) or s3(t) was separated with separability of

more than 9dB. Fig.3 shows that if two of three

sources are adjacent, the other source can be separated

with separability of more than 25dB when the null

point generated by the method suppresses two sources

simultaneously.

6. CONCLUSION

A new method for separating sound sources propagated in

the same direction and a new direct algorithm for blind

source separation were evaluated in 2-source and 3-source

separation experiments. The algorithm can also be applied

to frequency domain separation, which would enable

application of the method to sound separation in the

reverberant field. Such application and the solution to the

problems of more than 3 microphone systems remain to be

tackled.

7. REFERENCES

[1] M.Iwaki and A.Ando, “Selective Microphone System using
Blind Separation of Block Decorrelation of Output Signal,”
Proc. ICA2003, P5A-09, pp. 1023-1028, (2003).

[2] A. Hyvarinen, J. Karhunen, and E. Oja, Independent
Component Analysis, Wiley, (2001)

[3] K. Matsuoka, M. Ohya, and M. Kawamoto, “A Neural Net
for Blind Separation of Nonstationary Signals”, Neural
Network, Vol.8, no.3, pp.411-419, (1995)
[4] L. Parra, and C. Spence, “Convolutive Blind
Separation of Non-Stationary Sources,” IEEE Trans. Sp.
and Sig. Proc., Vol.8, no.3, pp.320-327, (2000)

[5] A. Ando, and K. Ono, “A Blind Separation Algorithm for
Separation of Nonstationary Sources,” Tech. Rep. of IEICE,
EA2004-22, pp.31-36, (2004)

[6] Y. Takahashi, M. Toyama, and M. Iwaki, “Sound Source
Separation by Decorrelation of 2-point Microphone Signal”,
Proc. 17th Int. Cong. on Acoustics, 3D.04.02, (2001)

[7] S. Kurita, H. Saruwatari, S. Kajita, K. Takeda, and F. Itakura,
“Evaluation of Blind Signal Separation Method Using
Directivity Pattern under Reverberant Conditions”, Proc.
ICASSP2000, Vol.5, pp.3140-3143 (2000)

f (c12 ,c 21)

= c21rx
(11)(t) + c12rx

(22)(t) + (1+ c12c21)rx
(12) (t)( )2 .

Fig.2 Experimental results

(2-source separation with 2-microphone system)
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