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ABSTRACT
The standard least–squares problem seeks to find a linear

combination of columns of a given matrix that best approx-

imates a target vector in Euclidean norm. The problem of

finding a linear combination of columns, the component-

wise magnitude of which approximates a target, is not a con-

vex problem, but can be well–approximated using semidef-

inite programming. High quality solutions can be found by

reformulating the problem as a generalization of a graph

partitioning problem, relaxing a rank constraint, and round-

ing back onto the feasible set. A bound on the gap between

the objectives of the global optimum and the approximate

solution can be calculated for instances of the problem, and

for many practical problems can be quite small. The prob-

lem is shown to have application in array pattern synthesis,

multidimensional filtering, and spectral factorization.

1. INTRODUCTION

Motivated by filter design problems where the important

characteristic of the filter is its magnitude frequency response,

we investigate a related general optimization problem,

min
x∈Cn

‖ |Ax| − b ‖2

2
, A ∈ C

m×n, b ∈ R
m
+ . (1)

The problem is not convex, and is difficult to solve di-

rectly as formulated, but by reformulating it as a type of

two–way partitioning problem [1], and performing a semidef-

inite relaxation, we can nonetheless obtain high quality so-

lutions. The problem naturally arises in multidimensional

filtering and array pattern synthesis problems where targets

are specified in terms of ideal magnitude responses (disre-

garding phase).

In the case of one–dimensional filters and uniformly spaced

line arrays, the difficulty of the problem is greatly reduced

because of the guaranteed existence of one–dimensional spec-

tral factorizations of magnitude responses [2] [3] [4]. This
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allows the designer to formulate a variety of one–dimensional

filter problems in terms of autocorrelation coefficients, which

are linearly related to the magnitude response. For multidi-

mensional filters and nonuniformly spaced arrays, the prob-

lem is, in general, much more difficult.

Related recent work on two–dimensional filtering and

array pattern synthesis with semidefinite programming can

be found in [5] and [6]. The author in [5] uses a semidefi-

nite relaxation for the purposes of obtaining discrete coeffi-

cient solutions, and the authors in [6] identify an objective

function similar to (1) arising in array pattern synthesis, and

approximately solve the problem using iteration. Our strat-

egy in overcoming the convexity difficulties associated with

(1) is to reformulate, relax through duality, and round the

solution onto the original feasible set.

2. FORMULATION

In their breakthrough paper [7], Goemans and Williamson

formulate a method for approximately solving an NP-complete

graph partitioning problem called MAXCUT using semidef-

inite programming. The authors prove that the method pro-

duces suboptimal solutions that are provably close in per-

formance to the true global optimum. This and other suc-

cessful employments of the technique have motivated us to

cast our problem into a form that resembles the two–way

partitioning problem.

There are two key observations that lead to the formu-

lation. The first is that we can eliminate the absolute value

bars by introducing an m× 1 vector of extra unity modulus

variables, and rewriting (1) as

minimize
x∈Cn, c∈Cm

‖Ax − Bc‖2
2 (2)

subject to |c| = 1,

where B = diag(b)

For fixed x, the ith component ci of the optimal c in (2) is

exp(jArg(Aix)). The vector c represents freedom in the

III - 530-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



problem to choose a complex target Bc that matches Ax
in componentwise polar angle. Formulation (2) is equiva-

lent to (1), transferring difficulties associated with the ob-

jective function (the absolute value operator) into the con-

straint |c| = 1 (nonlinear equality constraint).

The second key observation is that we can first minimize

over x and then minimize over c. In other words, prob-

lem (2) can be rewritten as

min
|c|=1

( min
x∈Cn

‖Ax − Bc‖2
2) (3)

The subproblem in parentheses has an analytic solution

in terms of c. Assuming A has full rank, we have

minimize
c∈Cm

‖A(AHA)−1AHBc − Bc‖2
2 (4)

subject to |c| = 1,

Letting U = A(AHA)−1AH − I , and W = (UB)H(UB),
we can convert the problem into a “complex two–way par-

titioning problem”,

minimize
c∈Cm

cHWc (5)

subject to |c| = 1,

3. RELATION TO REAL VALUED PARTITIONING
PROBLEM

In order to solve the nonconvex problem (5), we will per-

form a semidefinite relaxation and round the solution onto

the feasible set of the original problem. First, though, it is

illustrative to relate the complex problem (5) to the real–

valued two–way partitioning problem as described in [1].

First consider the objective function. The matrix W be-

ing conjugate symmetric, we can express cHWc as

cHWc = Tr
(
(cRcT

R + cIc
T
I )WR + (cRcT

I − cIc
T
R)WI

)
,

(6)

where cR and cI denote real and imaginary parts of c, WR

and WI denote the real and imaginary parts of W , and Tr()
is the trace operator.

Regarding |c| = 1, the following holds:

|c| = 1 ⇐⇒ diag(cRcT
R + cIc

T
I ) = 1, (7)

where, in this context, the function diag() vectorizes the

diagonal elements. Combining, we can express the original

complex problem as a real SDP with a rank constraint.

minimize
C∈R2m×2m

Tr(CW̃ ) (8)

subject to Cii + Ci+m,i+m = 1, ∀i = 1, ..., m

C � 0

rank(C) = 1

where W̃ =

[
WR −WI

WI WR

]

This is very similar to the real–valued two–way parti-

tioning problem statement in [1], differing only in the form

of the diagonal equality constraints. In (8), the first con-

straint states that pairs of diagonal elements of C must sum

to one, whereas in the standard two–way partitioning prob-

lem, all the diagonal elements are forced to unity.

4. RELAXATION

The semidefinite relaxation is found by ignoring the rank

constraint. The rank–relaxed problem is exactly the dual of

the associated (always convex) dual problem. The follow-

ing relaxations are equivalent:

Complex SDP relaxation:

minimize
C∈Cm×m

Tr(C W ) (9)

subject to Cii = 1, ∀i = 1, ..., m

C � 0

Real SDP Relaxation:

minimize
C∈R2m×2m

Tr(CW̃ ) (10)

subject to Cii + Ci+m,i+m = 1, ∀i = 1, ..., m

C � 0

Depending on the algorithm used to solve the semidefinite

programs above, one of the formulations may be advanta-

geous. For example, the complex formulation may be more

efficient for solvers that can natively handle complex num-

bers.

5. FEASIBLE SOLUTION

The optimal solution to the relaxation is a positive semidef-

inite matrix. Often it is of low rank, but it’s unlikely to be

rank 1, which would be required for the solution to the re-

laxation to correspond exactly to the solution of the original

nonconvex problem (5). We must find a rank 1 matrix that

approximates the optimal matrix for the relaxation in order

to obtain a useful solution. This can be done in a variety of

ways, as described in [8] [9]. In the examples that follow,

we draw samples {[s̄R
i ; s̄i

I ]}i=1,...,l from a random multi-

variate distribution with covariance Copt, the matrix opti-

mizing (10). Candidate feasible vectors are then created

as si = (s̄i
R + js̄i

I)/|s̄i
R + js̄i

I |. The rank 1 surrogate

for Copt is then taken to be sopts
H
opt, where sopt minimizes

sH
i Wsi over all the samples {si}i=1,...,l.

An alternative scheme is to take sopt to be the eigen-

vector corresponding to the largest eigenvalue of the matrix

Copt. Finally, the approximate solution to Problem (1) can

be calculated as xopt = (AHA)−1AHBsopt.

III - 54

➡ ➡



Since the vector sopt is feasible for the unrelaxed prob-

lem (5), the objective sH
optWsopt is an upper bound for the

globally optimal objective of (5). The ε–optimal objective

of the relaxation provides us with a lower bound. The gap

thus bounds the suboptimality of the solution, and can be

evaluated as a byproduct of the method for specific problem

instances.

6. APPLICATIONS

The problem, as stated in its original form, can easily be

seen to have many uses in engineering and elsewhere. For

example, the complex system Ax could represent samples

of superimposed waves created by n sources. Often it is

important to manage the amplitude of the resultant wave-

forms |Ax|. Linear filter design is a primary example, in-

cluding multidimensional filtering and beamforming. It is

sometimes the case that the magnitude frequency response

of the filter is the most important attribute of the design.

6.1. Magnitude beamforming with arbitrary array

Here we consider optimally choosing the weights for a beam-

former to achieve a response close in magnitude to a tar-

get. In general we do not have to assume anything special

about the geometry of the array or the uniformity of the ar-

ray element responses – for the example, we will consider

a twelve element linear array, but with random spacing be-

tween the elements. By sampling the far–field responses of

each array element individually, and the desired response

pattern across angle, we can construct a complex matrix A
and positive–valued real vector b for use in our formulation.

In this specific problem instance, the globally optimal ob-

jective can be no less than 99.6% of the objective achieved

for the approximate solution. Solving the corresponding

standard least–squares problem min ‖Ax − b‖ with hopes

that the solution will be close to the optimal with respect

to magnitude difference yields a solution that is 75 times

worse. Access to guarantees on the degree to which the so-

lution is suboptimal, generated numerically in the course of

solving, is an important feature of the method.

6.2. Two-dimensional filtering

We wish to design a two-dimensional filter that has magni-

tude response close to a target. As in beamforming, there

exists a variety of methods available for solving variants of

the problem. One advantage of the outlined framework is

that it is very general, requiring no special symmetries in

the design specifications nor any essential properties of the

dimension of the filter. Figure 2 shows the magnitude of a

complex two–dimensional filter of size 15×15, designed to

have a magnitude response that resembles a pyramid. The

target response was sampled on 31×31 equally spaced grid,
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Fig. 1. Magnitude beamforming with arbitrary array geom-

etry. The array element locations are shown as small circles

along with a wave (indicating relative wavelength).

making the dimensions of the A matrix 961 × 225. For this

example, the globally optimal objective can be no less than

66% of the objective of the achieved approximation. In this

case the bound is weaker, but nevertheless, the achieved pat-

tern matches the target closely. The optimal objective could

indeed be very close to the achieved value.
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Fig. 2. Magnitude frequency response of 15 × 15 two–

dimensional filter.

7. FURTHER APPLICATIONS AND EXTENSIONS

In this section we will mention a simple extension of prob-

lem (1), and a more subtle application of the problem in-
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volving approximate spectral factorization.

7.1. Regularization and Weighting

An enabling factor approximating (1) using the semidefinite

program (9) is the fact that we have an analytic expression

for the solution to the least–squares subproblem in (3). This

property also holds for a Tikhonov regularized version of

(1):

min
x∈Cn

‖ |Ax| − b ‖2

2
+ δ‖x‖2

2, δ ≥ 0. (11)

Problem (11) can be cast in the form of (5), but with

W = PHP + δQHQ, where (12)

Q = (AHA + δI)−1AHB and

P = AQ − B, B = diag(b).

The formulation is useful in controlling the sensitivity of the

objective with respect to the coefficients of the solution, and

can be used to find locally robust solutions to (1).

Another straightforward extension is that of incorporat-

ing linear weightings in the objective function.

7.2. Spectral Factorization

The main problem (1) has close ties to general spectral fac-

torization problems. As mentioned in the introduction, spec-

tral factorization makes designing one dimensional filters

with prescribed magnitude frequency responses a relatively

easy problem. The ideas described can be leveraged to cal-

culate approximate spectral factorizations of polynomials.

Suppose

q(ω1, ω2, ...) =

Q∑
{i,k,...}=1

q[i, k, ...]ejiω1ejkω2 ... (13)

is a multivariate trigonometric polynomial of fixed degree Q
that is real and nonnegative. Then we can find a polynomial

p of smaller degree P < Q, such that pp∗ approximates q.

This is done simply by sampling q and setting
√

q as b in

the formulation. Organizing the data appropriately, we can

write

p(ω1, ω2, ...)p
∗(ω1, ω2, ...) = |p(ω1, ω2, ...)|2

=

∣∣∣∣∣∣
P∑

{i,k,...}=1

p[i, k, ...]ejiω1ejkω2 ...

∣∣∣∣∣∣
2

. (14)

We can rewrite a sampled version of (14) as |A�p|2, where �p
is a rearrangement of the elements of the multidimensional

matrix p into a column vector. The data matrix A cor-

responds to samples of the trigonometric basis functions.

Finding �p such that |A�p| ≈ |b| thus generates an approxi-

mate spectral factor for the polynomial magnitude function.

8. CONCLUSION

We’ve formulated a semidefinite relaxation of a useful, but

generally difficult problem arising in generalized filter de-

sign: finding filters with desired magnitude frequency re-

sponses. The method possesses features that it is flexible

in its applicability and is understandable in terms of other

successful approximation techniques arising in graph par-

titioning. Additionally, bounds on the degree to which the

approximation is suboptimal can be calculated easily.
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