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ABSTRACT

Time delay estimation (TDE) in a reverberant acoustical environ-
ment is a very challenging and difficult problem. This paper tack-
les the problem by exploiting the redundant information provided
by multiple microphone sensors. To do so, the multichannel cross-
correlation coefficient (MCCC) is re-derived, in a new way, to
connect it to the well-known linear interpolation technique. Some
interesting properties and bounds of MCCC are discussed, and a
recursive algorithm is then introduced so that MCCC can be esti-
mated and updated efficiently when new data snapshots are avail-
able. We then apply the MCCC to the TDE problem, resulting a
multichannel cross-correlation algorithm that can be treated as a
natural generalization of the generalized cross-correlation (GCC)
TDE method to the multichannel case. It is shown that this method
can take advantage of the redundancy provided by multiple mi-
crophone sensors to improve TDE against both reverberation and
noise.

1. INTRODUCTION

Time delay estimation (TDE), which is a fundamental approach
for identifying, localizing, and tracking radiating sources, has at-
tracted a considerable amount of research attention for decades.
Recently, there has been a growing interest in the use of the TDE
technique to locate and track acoustic sources in a conferencing en-
vironment, which also serves as the main motivation for this work.

The objective of TDE is to determine the relative time dif-
ference of arrival (TDOA) between signals received by different
sensors. The generalized cross-correlation (GCC) method is the
most popular to do so and is well explained in an informative pa-
per by Knapp and Carter [1]. This technique is quite successful
in localizing and tracking a single source in an open-field environ-
ment where no multi-path effect is present, but suffers significant
performance degradation in the presence of reverberation, which is
a common phenomenon in a conferencing room environment [2].

Much attention has been paid to combating reverberation
lately. Most of such efforts fall into two categories. The first is
to blindly estimate the channel impulse responses from the source
to the two microphones [3], [4]. The better this estimate is, the bet-
ter the relative delay between these two microphone signals can be
estimated; but this is a difficult problem and the resulting time de-
lay estimates are sensitive to noise. The second is to use more
than two microphones and take advantage of the redundancy [5],
[6]. In [7], we developed a spatial correlation based TDE tech-
nique, which belongs to the second category. This method can be
seen as a natural generalization of the GCC approach to the multi-
channel case, and is able to improve TDE when more microphones
are available. This paper is an extension of the work presented in
[7]. The contributions of this paper are threefold. First of all, we
re-derive the multichannel cross-correlation coefficient (MCCC),
in a new way, to connect it to the well-known linear interpolation
technique, and discuss its interesting properties and bounds. Sec-
ondly, we introduce a recursive algorithm so that the MCCC can
be estimated and updated efficiently when new data snapshots are
available. Finally, we apply the MCCC to the TDE problem, re-
sulting in a multichannel correlation algorithm. This algorithm is

able to take advantage of the redundancy provided by multiple mi-
crophone sensors to improve TDE against both reverberation and
noise.

2. LINEAR INTERPOLATION

We assume that we have � signals � � � � � � � 	 � � � � 
 
 
 � � � � 	 � � � ,
and we seek to determine how any one of these signals can be
interpolated from the others. To interpolate � 
 � � � from the rest,
we need to minimize the criterion [8]� 
 � � � � ��� � � � � � � � � � � 	� � � � � 
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) is a forgetting factor,
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is a vector used to compute the interpolation error (this vector with-
out the component � 
 
 is the ' th (  " ' " � � �

) interpolator of
the vector signal),
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is a vector of length � where its ' th component is equal to one and
all others are zero, and

R � � � � ��� � � � � � � ( � � � ( � � � � (3)

is an estimate of the signal covariance matrix. Matrix R � � � is
positive semi-definite; but in the rest, we suppose that it is positive
definite so it is invertible.

By using a Lagrange multiplier, it is easy to see that the solu-
tion to this optimization problem is:

R � � � c 
 � � � � � ) 
 � � � u 
 � (4)

where ) 
 � � � � c �
 � � � R � � � c 
 � � � � �
u �
 R � 	 � � � u 
 (5)

is the interpolation error energy. Since� c 
 � � �) 
 � � � � R
� 	 � � � u 
 � (6)

then the ' th column of R � 	 � � � is
�

c 
 � � � * ) 
 � � � . We deduce that
R � 	 � � � can be factorized as follows:
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Since R � � � 	 
 is a symmetric matrix, (7) can also be written as:� � � � 	 
 � D
� �� � 	 
 C � 	 
 � (8)

The first and last columns of R � � � 	 
 contain respectively the nor-
malized forward and backward predictors and all the columns be-
tween contain the normalized interpolators. C � 	 
 is simply the
matrix of the interpolators and D � � 	 
 is a diagonal matrix con-
taining all the respective interpolation error energies.

3. MULTICHANNEL CROSS-CORRELATION
COEFFICIENT

The definition of multiple coherence function, derived from the
concepts of the ordinary coherence function between two signals
and the partial (conditioned) coherence function, was presented
in [9] to measure the correlation between the output of a MISO
(multiple-input/single-output) system and its inputs. In this sec-
tion, we re-derive the multichannel cross-correlation coefficient
(MCCC) in a new way such that it is related to the multichan-
nel correlation matrix. With this new definition, the MCCC can be
treated as a generalization of the classical cross-correlation coef-
ficient to the case where we have more than two processes. The
covariance matrix can be factorized as follows:
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 � D
� � �� � 	 
 �

R � 	 
 D � � �� � 	 
 � (9)

where
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and
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� � � � � 	 
 � 	 	 � 	 
 � ! � 
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� � 	 � 	 
 is the cross-correlation coefficient between � � � 	 
 and� 	 � 	 
 .
Since matrix

�
R � 	 
 is symmetric, positive definite, and its di-

agonal elements are all equal to one, it can be shown that:� $ � � 
 % �
R � 	 
 & ' � � (14)

where “det” stands for determinant.

We can now define the squared MCCC among the " signals� � � 	 
 � � � � 	 
 � � � � � � 
 � � � 	 
 , as:

� �
 � 	 
 �� � # � � 
 % �
R � 	 
 & � � # � � 
 ( R � 	 
 )� 
 � �* � � � * * � 	 
 � (15)

This definition is identical to the one given in [10] using the Gram
determinant. For two ( " � � ) processes � � � 	 
 and � � � 	 
 , we
have:

� �� � 	 
 � � �� � � 	 
� � � � 	 
 � � � � 	 
 � (16)

which is the classical definition of the squared cross-correlation
coefficient. It can be shown that

� �
 � 	 
 has the following proper-
ties. (Proofs are omitted here due to the limited space available.)� � ' � # � � � � �� � � � � � ' � �
 � 	 
 ' � # � 
 � �* � � � � � � �� � � � � � ' � � � ! �( � � " # � ) .� If two or more signals are perfectly correlated, then� �
 � 	 
 � �

.� If all the processes are completely uncorrelated with each
other, then

� �
 � 	 
 � � .� If one of the signals is completely uncorrelated with the " #�
other signals, then MCCC will measure the correlation

among those " # �
remaining signals.

Now if we define
� �� � 	 as

� �� � 	 � � # � � 
 % �
R � � 	 � 	 
 & � (17)

where 
 � ! , and
�
R � � 	 � 	 
 is a � 
 # ! 
 � � 
 # ! 
 matrix whose

elements are taken as a block from the ( ! , ! )-position to the (
 ,
 )-
position from the matrix

�
R � 	 
 . We then can derive that:

� �� � 
 � � � 	 
 � � �
 � 	 
 � � # 
 � ��* � � � *
�

*
� 
 � � � 	 
� * * � 	 
 � (18)

where
� *

�
*

� 
 � � � 	 
 is the forward prediction error energy (of order" # � # �
) using the signals � * � 	 
 , � * � � � 	 
 , � � � , � 
 � � � 	 
 and� � � � � 
 � � � 	 
 � � � � 	 
 . This shows how the MCCC is related to

the different orders of the forward linear prediction energies. It
can also be shown with the different orders of the backward linear
prediction energies:

� �
 � � � � � 	 
 � � �
 � 	 
 � � # 
 � ��* � � � 
 � � � *
� 
 � � � *

� � � 	 
� * * � 	 
 � (19)

where
� 
 � � � *

� 
 � � � *
� � � 	 
 is the backward prediction error en-

ergy (of order " # � # �
) and

� 
 � � � 
 � � � � � 	 
 � � 
 � � � 	 
 . Ob-
viously, we can generalize this approach to any linear interpolator.
For two ( " � � ) processes � � � 	 
 and � � � 	 
 , we have:

� �� � 	 
 � � �� � � 	 
� � � � 	 
 � � � � 	 
 � � # � � � 	 
� � � � 	 
 � � # � � � 	 
� � � � 	 
 � (20)

4. APPLICATION TO TIME DELAY ESTIMATION

4.1. Signal Model
Suppose that we have a linear array, which consists of " micro-
phones whose outputs are denoted as � * � 	 
 , � � � � � � � � � � " # �

.
Without loss of generality, we select Microphone 0 as the reference
point and consider the following propagation model:
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� � � � � � �
�

� � � � � � �
� � � � � � �

� � � � 	 (21)
where �

�
,

� � 
 	 � 	 � 	 � � � 	 
 � �
, are the attenuation factors due

to propagation effects,
�
is the propagation time from the unknown

source � � � � to Microphone 0, �
� � � � is an additive noise signal at

the
�
th microphone, � is the relative delay between Microphones 0

and 1, and
�

� � � � is the relative delay between microphones 0 and�
, with

� � � � � � 
 and
� � � � � � � . The function

�
�
(for

� � �
)

depends on � but also on the microphone array geometry. It can
be specified for arbitrary arrays in one, two, or three dimensions.
In this paper we are considering only linear arrays. In the far-field
case (i.e., plane wave propagation), if the array is equispaced, we
have

�
� � � � � � � , and if it is not equispaced, we have

�
� � � � �� �

� � �� � � 	 � � 	 � � � , where 	 � is the distance between Microphones �
and � � �

, � � 
 	 � 	 � 	 � � � 	 
 � � . In the near-field case,
�

�
depends

also on the position of the source. In this paper, we focus only
on the far-field case. In such a situation, � is not known, but the
geometry of the antenna is known such that the exact mathematical
relation of the relative delay between Microphones 0 and

�
is well

defined and given. It is further assumed that �
� � � � is a zero-mean

Gaussian random process that is uncorrelated with � � � � and the
noise signals at other microphones. It is also assumed that � � � � is
reasonably broadband.

4.2. Time Delay Estimation Based on the Squared MCCC
We are interested in estimating only one time delay ( � ) from mul-
tiple sensors. Consider the following vector:

x � � 	 
 � � � � � � � � � � � � � � � � 
 � � � � � � � � � � � � � � � � � 
 � � � � �
(22)

We can check that for 
 � � , all the signals � � � � � �
� � � � � , � �
 	 � 	 � � � 	 
 � �

, are aligned. This observation is essential because
it already gives an idea on how to estimate � . An estimate of the
covariance matrix corresponding to the signal x � � 	 
 � is:

R � � 	 
 � � ��� � � � � � � � � � 	 
 � � � � � 	 
 �
� � R � � � � 	 
 � � � � � 	 
 � � � � � 	 
 � � (23)

Therefore, the squared MCCC is:

� �� � � 	 
 � � � � � � � � R � � 	 
 � �� � � �� � � �
� � � � 	 
 � 	 (24)

where

�
� � � � 	 
 � � ��� � � � � � � � �

� � � � �
� � 
 � � 	 � � 
 	 � 	 � � � 	 
 � � � (25)

The value of 
 that gives the maximum of
� �� � � 	 
 � , for different


 , corresponds to the time delay between microphones 0 and 1.
Hence, the solution to our problem is:

�� � arg � 
 ��
� �� � � 	 
 � 	 (26)

where 
 	 � � � � � � 	 � � � � � , and � � � � is the maximum possible de-
lay. When there are only two microphones available, (26) becomes

�� � arg � 
 ��
� �� � � 	 
 � � arg � 
 ��

� �� � � � 	 
 �� � � � � 	 
 � � � � � � 	 
 � � (27)

In this case, the approach is similar to the generalized cross-
correlation method proposed by Knapp and Carter [1]. When there
are more than two microphones available, the approach can be
seen as a multichannel cross-correlation method, which can take
advantage of the knowledge of the microphone array to estimate
only one time delay (instead of estimating multiple time delays
independently) in an optimal way in a least-squares sense.

4.3. Recursive Estimation of the Squared MCCC
There are many different ways to estimate the squared MCCC.
Here, we propose to estimate the elements of

� �� � � 	 
 � recur-
sively. The recursive estimation of

�
� � � � 	 
 � is straightforward.

Indeed, we have:
�

� � � � 	 
 � � � �
� � � � � � 	 
 � � � �

� � � � �
� � 
 � � 	� � 
 	 � 	 � � � 	 
 � � 	 (28)

it is then easy to compute
� � � �� � � �

� � � � 	 
 � . From (23), we have:�
� R � � 	 
 � R � � � � � � 	 
 �

� I �
�

�
� � � 	 
 � � � � � 	 
 � R � � � � � � 	 
 � � (29)

One can notice that the right-hand side of (29) is of the form I �
yz � . So it has one eigenvalue equal to

� � y � z, and the rest all
equal to unity. The determinant, which is the product of all the
eigenvalues is therefore equal to

� � y � z. We then have:�
� � � � � � R � � 	 
 � R � � � � � � 	 
 � �

� � �
�

�
� � � � 	 
 � R � � � � � � 	 
 � � � � 	 
 � 
� �

� � � 	 
 � 	 (30)

and finally we get:

� � � � R � � 	 
 � � � � �
� � � 	 
 � � � � � R � � � � 	 
 � � � (31)

The inverse of matrix R � � 	 
 � that appears in � � � 	 
 � can also
be calculated recursively:

R
� � � � 	 
 � � � � �

R
� � � � � � 	 
 �� � � � � � � 	 
 � k � � � 	 
 � k � � � � 	 
 � 	 (32)

where

k � � � 	 
 � � R
� � � � � � 	 
 � � � � 	 
 � � (33)

5. EXPERIMENTS
5.1. Experimental Setup
Experiments were carried out in the Varechoic Chamber which
is a unique facility at Bell Laboratories. The chamber is a� � � � � � � � � � � m room whose surfaces are covered by a total
of 369 active panels which can be controlled digitally. Each panel
consists of two perforated sheets. When the holes in the sheets are
aligned, absorbing material behind the sheets will be exposed to
the sound field, whereas a highly reflective surface can be formed
if the holes are shifted to misalignment. Combination of open and
closed panels can produce � � � � different acoustic environments
where the

� 
 -dB reverberation time � � � can change from 0.2 to
almost 1 second.

A linear microphone array which consists of six omni-
directional microphones was employed in the measurement. The
six microphone positions are M1 (2.437, 5.600, 1.400), M2 (2.537,
5.600, 1.400), M3 (2.637, 5.600, 1.400), M4 (2.737, 5.600, 1.400),
M5 (2.837, 5.600, 1.400), and M6 (2.937, 5.600, 1.400), respec-
tively (coordinates with reference to the lower southwest corner
and corresponding to meters along the South wall, West wall,
floor). The source was simulated by placing a loudspeaker at
(1.337, 4.162, 1.600). The transfer functions of the acoustic chan-
nels between the loudspeaker and six microphones were measured
at a 48 kHz sampling rate. Then the obtained channel impulse
responses were downsampled to a 16 kHz sampling rate and trun-
cated to 4096 samples. These measured impulse responses will be
treated as the actual impulse responses in the TDE experiments.
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5.2. Experimental Results
The source signal is a speech (from a female speaker) sampled
at 16 kHz and of duration 4 minutes. The six-channel observa-
tion signals are obtained by convolving the speech source with the
corresponding measured channel impulse responses and adding a
zero-mean, white, Gaussian noise to each one of these outputs for
a given signal-to-noise ratio (SNR).

Two experimental conditions are considered. One pertains to
a light reverberant environment where reverberation time, T

�
� , is

approximately 240 ms. The other relates to a heavily reverberant
environment where T

�
� � � � � ms. In both cases, SNR � � �

dB. The multichannel signals are partitioned into non-overlapping
frames with a frame size of 128 milliseconds. For each frame,
a delay estimate is measured according to the estimator given by
(26) with a forgetting factor � � � � �

�
. Therefore, with a 4-minute

speech sequence, a total of 1875 time delay estimates are yielded.
To evaluate the performance, we classify an estimate into two com-
prehensive categories: the class of success and the class of failure
[2]. An estimate

�
� � for which the absolute error � �

� � �
� � � exceeds

T � � � , where T � is the signal correlation time, and � � the true delay,
is identified as a failure or an anomaly which follows the terminol-
ogy used in [2]. Otherwise, an estimate would be deemed as a
success or a nonanomalous one. In this paper, T � is defined as the
width of the main lobe of the source signal autocorrelation func-
tion (taken between the

� �
-dB points). For the particular speech

signal used here, which is sampled at 16 kHz, T � is equal to 4.0
samples (0.25 ms). After time delay estimates are classified into
the two classes, the TDE performance is evaluated in terms of the
percentage of anomalies over the total estimates, and the mean
square error (MSE) of the nonanomalous estimates.

The experimental results are graphically portrayed in Fig. 1.
We found that the percentages of anomalies in both conditions are
rather small, therefore not plotted. As seen from Fig. 1 (a), the
estimator yields reasonably good performance in the light rever-
beration condition. The MSE is approximately

� �
� dB when only

two sensors are used (in this case, the estimator is equivalent to
the classical cross-correlation method, one member of the GCC
family). It is reduced to

�
�

�
dB when one more microphone is

added, and diminishes when more than four sensors are available.
This demonstrates the effectiveness of the algorithm in taking ad-
vantage of the redundant information provided by multiple micro-
phones to mitigate the effect of noise and reverberation.

Comparing Fig. 1 (a) with Fig. 1 (b), one can see that the
MSE of the estimator deteriorates significantly when reverberation
time becomes longer. This is understandable. As reverberation
becomes stronger, more reflections (some have a stronger energy
level, and some have a longer delay) will reach the microphone
sensors. As a result, the peak of the cost function shifts away from
the true delay, which will eventually lead to performance degra-
dation. It is remarkable that, even in the heavily reverberant envi-
ronment, the TDE accuracy increases with the number of micro-
phones, corroborating the powerfulness of the multichannel TDE
approach in exploiting redundancy to combat distortion.

6. CONCLUSIONS

Time delay estimation in reverberant environments remains a diffi-
cult challenge and further research efforts are indispensable. This
paper has dealt with TDE, with emphasis on combating reverber-
ation. Starting with the theory of linear interpolation, it has in-
troduced the concepts of multichannel correlation matrix and mul-
tichannel cross-correlation coefficient. Some interesting proper-
ties and bounds of the MCCC were discussed. An efficient recur-
sive algorithm was proposed to estimate and update the MCCC
when new data snapshots are available. This new definition of
the MCCC was then applied to the problem of time delay estima-
tion, resulting in a multichannel TDE algorithm. It was shown that
this new approach is equivalent to the classical cross-correlation
method, one member of the GCC family, in the two-sensor case. It
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Fig. 1. MSE of the nonanomalous delay estimates in reverberant
and noisy environments: (a) T

�
� � � 	 � ms, and SNR � � �

dB;
(b) T

�
� � � � � ms, and SNR � � �

dB. (Note: in (a), when four or
more microphones are used, all the time delays are correctly identi-
fied, and MSE of the nonanomalous estimates becomes zero. Thus
10 
 � � � � 	 MSE 
 becomes minus infinity, which is not displayed in
the figure.)

can be treated as a natural generalization of the cross-correlation
method to the multichannel case when more than two sensors are
available. An appealing property of this new algorithm is that it
can fully utilizes the redundant information provided by multiple
sensors to enhance the TDE performance against distortion. Ex-
periments confirmed that the delay estimation accuracy increases
with the number of sensors.
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