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ABSTRACT

In automatic speech recognition, speech features are 

measured and used as reference templates for machine 

learning and recognition. The differences between these 

features can be used to calculate relative acoustic 

distances between phonemes. However, when speech 

signals are spectrally degraded, as in electric hearing with 

cochlear implants, it is unclear whether these acoustic 

distances can predict speech recognition performance. The 

present study measured acoustic distances between 

spectrally degraded vowel tokens and investigated the 

relation between acoustic vowel space and perceptual 

vowel space. After processing vowel tokens using a 

cochlear implant simulation, Mel-frequency cepstrum was 

extracted from each token; features were then time 

aligned and the weighted Euclidean distance was 

calculated between all tokens. Results demonstrated a 

significant correlation between vowel perception data and 

averaged acoustic distance between vowel tokens, for a 

variety of experimental conditions. These results suggest 

that acoustic distance between phonemes may well predict 

recognition performance of spectrally degraded speech. 

1. INTRODUCTION 

Cochlear Implants (CIs) represent speech signals by using 

the temporal envelope extracted from frequency analysis 

bands to modulate pulse trains delivered to appropriate 

implanted electrodes. CI users’ perception performance on 

such degraded speech stimulation typically not only 

depends on the front end CI speech processor, but also on 

the cochlear and central brain mapping. Variable factors 

such as number of electrodes, acoustic input frequency 

range, stimulation rate and envelope cutoff frequency 

differs in CI speech processors. In addition, individuals 

greatly differ in electrode insertion depth and healthy 

neural population.  

Previous CI speech perception studies have 

systematically explored some speech processor 

parameters while fixing others [1, 5]. These parametric 

studies are not only time consuming, but results are often 

difficult to interpret because of interactions between fixed 

and varied parameters. However, if the signal degradation 

due to these variable factors can be quantified, the above 

disadvantages might be lessened or avoided. Further, 

quantification of degraded speech can be potentially 

correlated to perception data; hence it might help to 

evaluate the performance of individual patients according 

to the specifics of their implant device, etiology and 

parameter settings.    

The spectrally degraded speech patterns experienced 

by CI users can be simulated using an acoustic noise-band 

vocoder [1]. CI patient performance has been consistently 

shown to be comparable to that of normal-hearing (NH) 

subjects listening to similar processing conditions. In 

automatic speech recognition (ASR) field, the most 

popular front-end feature extraction method is Mel-

cepstrum coefficients, which can yield high recognition 

rate. This implies that Mel-cepstrum coefficients may well 

expand parameter space and identify acoustic differences 

between speech signals, although machine learning may 

not always employ perception cues. Using this ASR 

feature extraction technique to map acoustic space 

processed by a CI simulation, perceptual data can then be 

compared to acoustic distance data.  

The present study evaluated whether perceptual space 

of spectrally degraded speech via CI processing can be 

predicted by acoustic space of processed phonemes. The 

acoustic distance between vowel tokens processed by a CI 

simulation was measured for several speech processing 

conditions. These acoustic spaces were compared to 

perceptual data from NH listeners listening to the same CI 

simulation.  
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2. METHODS 

2.1 Test materials

Tokens used for both acoustic analysis and closed-set

vowel recognition tests were digitized natural productions

drawn from speech samples collected by Hillenbrand et al. 

[2]. There were 12 phonemes in the stimulus set,

including 10 monophthongs and 2 diphthongs, presented

in a /h/vowel/d/ context (heed, hid, head, had, who’d, 

hood, hod, hud, hawed, heard, hoed, hayed). All stimuli

were normalized to have the same long-term root mean

square (RMS) values. Acoustic spaces of variable

experiments were measured from 2 male and 2 female

talkers while recognition tests were measured from 5

males and 5 females.

2.2 CI simulation: degraded speech synthesis 

In acoustic CI simulation, the effects of several processing

conditions were investigated, including the number of 

frequency bands, frequency band partitions, spectral

smearing and temporal envelope cutoff frequency. A 

noise-band vocoder was used to simulate a CI speech

processor fitted with the Continuously Interleaved 

Sampling (CIS) strategy [3]. The processor was 

implemented as follows. The signal was first processed

through a pre-emphasis filter (high-pass with a cut off 

frequency of 1200 Hz and a slope of 6 dB/octave). An 

input frequency range was band-passed into a number of 

frequency analysis bands. The temporal envelope was

extracted from each frequency band by half-wave

rectification and low-pass filtering. The envelope of each

band was used to modulate a wideband noise, which was

then spectrally limited by the same bandpass filter as the 

one used in the original analysis band. Finally, the

modulated carriers of each band were summed and the

overall level was adjusted to be the same RMS level as the

original speech. Unless otherwise noted, for all

conditions, four spectral bands were used, the overall

input frequency range was 100 – 4000 Hz, the analysis

and carrier band filter slopes were 24 dB/octave and the

temporal envelope filter cutoff frequency was 160 Hz. 

Specifically, the number of frequency bands, the slope

and the distribution of the analysis filters, and the cut-off

frequency of the envelope filter depended on experimental

conditions. Further details of speech processor parameters

are described below.

2.1.1 The number of spectral channels

In CI speech processing, perhaps the most important

parameter is the number of spectral channels. Previous

studies with both CI listeners and NH subjects listening to

a CI simulation have shown that performance generally

improves with increasing numbers of spectral channels [1, 

4, 5]. In the present study, changes in acoustic space due

to spectral resolution were compared to NH listener’s

perceptual data. A number of spectral resolution

conditions were analyzed: 8-, 6-, 4-, 3-, 2-, and 1-channel

speech, as well as unprocessed speech. The input 

frequency range was linearly divided by number of 

frequency bands for each test condition.

2.1.2 Frequency allocation

Another important speech processor parameter is the 

frequency allocation, which determines the assignment of 

acoustic frequencies to the place of stimulation in the 

cochlea. Several studies have shown that speech

recognition can be significantly affected by frequency

allocation, especially when the number of frequency

bands is relatively small [5]. In the present experiment,

the effect of frequency allocation on the acoustic space of 

4-channel processed speech was analyzed. Seven

frequency allocation tables were generated according to 

Eq. 1: 
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where k is the channel number,  is a constant, N is the

total number of frequency bands, X is the cochlear extent

(in mm) relative to the maximum frequency F (Hz), and p

is the frequency warping factor (ranging between 0.01 and 

0.06 in 0.01 steps; when p=0.01, the frequency-to-place 

mapping was nearly linear and when p=0.06, the mapping

was nearly logarithmic). X and F are related according to 

Eq. 2:
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which is merely a reverse form of the place-frequency

mapping proposed by Greenwood [6]. Six frequency

allocation conditions were tested (P1 – P6, corresponding

to the range of frequency warping factors p). For 

comparison, a linear frequency allocation was tested (P0).

The above frequency allocation method was applied to

both the analysis and carrier bands.

2.1.3 Spectral smearing

When spectral details in speech signals are smeared

(because of channel/electrode interactions), CI users’ 

effective spectral resolution can be further reduced. 

Several studies have shown that as the amount of spectral

smearing increased, recognition performance reduced [5].

In the present experiment, the effect of spectral smearing

on the acoustic space of processed vowels was analyzed. 

Spectral smearing was approximated by varying the

degrees of overlapping between carrier bands. The 

frequency allocation was fixed at condition P2 as 

described above in section 2.1.2. The analysis band filter
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slope was fixed (36 dB/octave), while the carrier band

slope was varied between 36 dB/octave (no spectral

smearing) and 6 dB/octave (spectrally smeared).

2.1.4 Temporal smearing

In CI speech processors, temporal envelope is typically 

extracted from each frequency analysis band by half-wave

rectification and low-pass envelope filtering. Previous

studies have shown that slowly varying temporal

components (< 20 Hz) provide most useful phonetic

information to CI and NH listeners, even with spectrally

degraded speech [1,7]. In the present experiment, the 

effect of temporal smearing on the acoustic space of 

processed vowels was analyzed. The corner frequencies of 

4 spectral bands were 300, 713, 1509, 3043, and 6000 Hz. 

Different degrees of temporal smearing were simulated by

varying the cutoff frequency of envelope filter (640, 160, 

40, 20, to 10 Hz), thereby limiting the available temporal

cues.

2.3 Acoustic distance measurement and space 

definition

Acoustic distance between two tokens was defined as the

least-cost mapping of time-aligned and path-weighted

Euclidean distance of their Mel-cepstrum coefficients, as 

shown in Eq. 3:
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where d(c(k)) is the Euclidean distance between two 

aligned Mel-cepstrum coefficient vectors, w(k) is a 

nonnegative path-weighting coefficient and F is a time

warping function. The denominator  is employed

to compensate path length [8].

)(kw

For each speech processing condition, acoustic 

distance between each vowel pair was measured and 

entered into an acoustic confusion matrix. Acoustic space 

for each processing condition was defined as the averaged 

value of the acoustic confusion matrix, which reflects the

acoustic space volume that the speech processing

condition expands. In parallel, perceptual space was 

defined as the averaged overall percent correct under each

experimental condition, which reflects the actual

perceptual volume achieved from experiments. Hence,

bigger acoustic space volume implies a better distinction 

among vowels, which will potentially result in less 

confusion in speech perception (higher percent correct 

rate). For comparison purposes, both acoustic space and

perceptual space were normalized to one. The normalized

acoustic space was computed by dividing the acoustic 

space of spectrally degraded speech by the acoustic space

of the original speech; while the normalized perceptual 

space was computed by rationalized arcsine 

transformation [10].

3. RESULTS AND DISCUSSION 

3.1 The effect of the number of bands 

Figure 1 shows the normalized acoustic space as a 

function of the number of spectral bands. For comparison

purposes, normalized perceptual space for NH subjects

listening to the same conditions is also shown in Figure 1

(see right axis). As the number of spectral channels 

increase, the acoustic space steadily expands. On average, 

as the number of channels was doubled, the acoustic space 

was expanded by about 21%, which is comparable to that

of perception space under 8 channels (22%). Statistical

analysis revealed a significant correlation between the

normalized acoustic space and the perceptual space

(r2=0.974, p<0.0001). 
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Figure 1: The effect of number of frequency bands 

3.2 The effect of frequency allocation

Figure 2 shows the normalized acoustic space and 

perceptual space as a function of the frequency allocation.

Both the peaks of acoustic space and perceptual space

were found when frequency warping factor p = 0.02 

(condition P2). The frequency allocation had a small but

significant effect on acoustic space as the frequency

allocation became more linear or more logarithmic.

Statistical analysis again revealed a significant correlation

between acoustic space and perceptual space (r2=0.653,

p=0.028).
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Figure 2: The effect of frequency allocation
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3.3 The effect of spectral smearing 

Figure 3 shows the normalized acoustic space and 

perceptual space as a function of the amount of spectral

smearing. As the slope of the carrier bandpass filters 

became shallower (increasing the degree of spectral

smearing), the acoustic space gradually reduced.

Similarly, NH subjects’ recognition performance

worsened as the amount of spectral smearing increased.

Statistical analysis revealed a significant correlation 

between the normalized acoustic space and the perceptual 

space (r2=0.975, p=0.012).
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Figure 3: The effect of spectral smearing

3.4 The effect of temporal envelope cutoff frequency 

The acoustic space for vowel tokens as a function of the

amount of temporal envelope information is shown in

Figure 4. Similar to the perception data, there was no 

significant change of acoustic space when the cutoff

frequency of envelope filter was 10 Hz or above.

Cutoff Frequency of Envelope Filters(Hz)
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Figure 4: The effect of temporal envelope

4. GENERAL DISCUSSION AND CONCLUSIONS 

Results from the present study demonstrated that most

spectrum-related speech processor parameters

significantly affect both acoustic space and perceptual 

data. A significant correlation between acoustic space and 

perceptual space was observed for all experimental

conditions.

It is also interesting to note that speech processor

parameters that had no effect on recognition performance

(e.g., amount of temporal information) also did not

significantly affect acoustic vowel space. Furthermore,

confusion patterns between phonemes were matched

between the acoustic and perceptual distances. For

example, acoustic distance of the vowel pair “had/head” 

was generally smallest, while distance of the vowel pair

“had/heed” was greatest and was more than 12 times

greater than the “had/head” distance. These acoustic 

distances agree with perceptual confusions, which showed 

that “had” is more likely to be confused with “head” 

rather than “heed.”

The results indicate that measuring acoustic space 

using dynamic time warped Mel-cepstrum coefficients 

could nicely predict perception data for a variety of

parameter settings in a CI speech processor. These results 

are in agreement with recent research by Remus [9], but 

provide better perceptually related acoustic distances for 

most spectrally related parameters in CI speech 

processing.

In the present study, simulations investigated did not

include spectral shift and compression, which is normally

associated with CIs due to limited electrode insertion

depth. Further research on it may shed light on the

underlying mechanism of recognizing spectrally degraded

and mismatched speech.
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