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ABSTRACT

Block-based physical modeling algorithms for sound synthesis have
gained more and more interest in the past few years. They have
the advantage, that new models can be created by combining ex-
isting blocks and they offer the opportunity to combine different
modeling techniques. In this paper we propose a general approach
how to create physical models in blocks and how to connect these
blocks assuring their correct physical interaction. Furthermore we
show how to implement the interconnection of these models with
wave digital filter principles. The complete procedure is applied
to the example application scenario of the one-dimensional wave
equation. Three different modeling techniques are used. One part
is implemented with a finite difference time domain approach, one
with the functional transformation method, and the boundaries are
implemented by wave digital filters.

1. INTRODUCTION

Physical modeling is one of the most promising approach for dig-
ital sound synthesis in the last few years. Besides producing good
sounds it pays regard to a natural and intuitive interaction between
human and sound model, unlike the wide-spread sampling method.
In focusing on the sound production mechanism rather than on the
sound itself, physical modeling techniques provide more musical
expression freedom to the user.

In this scope block-based algorithms become more and more
interesting. Quite a number of physical modeling methods are
available nowadays (see e.g. [1]). Furthermore, automatic synthe-
sis strategies exist for building virtual musical instruments from a
selection of blocks, each based on the physical modeling paradigm
[2, 3]. Using these strategies via an intuitive user interface al-
lows the musician to interact with virtual physical entities (strings,
membranes, bells, wind instruments, etc.) rather than with techni-
cal components (VCO, filters, etc.).

2. BLOCK MODELS AND THEIR PHYSICAL
INTERACTION

As a first step towards block-based physical modeling, a partial
differential equation description for physical models is considered.
The correct physical interaction between blocks is specified in terms
of boundary conditions.
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2.1. Physical modeling with partial differential equations

Physical models are based on physical laws which themselves are
represented by differential equations. At least for linear systems,
this set of differential equations can be compiled into a single par-
tial differential equation (PDE) for the scalar output y(x,t) with a
certain order of the derivatives in space z and time ¢.
Alternatively one can also represent the model by a vector
PDE, where the space and time-derivatives are only of order one
(see [1] for instance). This vector PDE can generally be written as

Ay(e,t) + BYy(e,1) + Coy(et) = e, t) . (1)
All elements in (1) are matrices of size n X n, respectively vectors
of size n x 1. Higher order systems result in a larger number of
dimensions n. y(z,t) denotes the vector of dependent variables
and f, is the vector of excitation signals. Depending on the type
of problem, C is a mass or capacitance matrix. The first order
spatial derivative V is defined according to the spatial dimensions
of y(z, t). The notation according to (1) will be used in the sequel.

2.2. Interaction by boundary conditions

However, besides the PDE (1), initial conditions (ICs) for the tem-
poral derivatives and boundary conditions (BC) for the spatial de-
rivatives are needed for a unique system description. Especially
the BCs are of interest in this scope, as they define the behavior
of the model at the intersection to the other block models. Fig. 1
depicts a schematic diagram of two interconnected string models
as an illustration.

Both outputs y1(x1,t) and y2(x2, t) are defined in the regions
Vi resp. V2 in Fig. 1. The PDEs governing each region may be
realized with different models. Assuming a seamless transition
from one model to the other, there has to be a function y(z,t) that
solves a global PDE on the combined region V = V3 UV> U V.

This implies for the vector model (1) that y(x,t) is differen-
tiable for z € V/, including the boundary z, € OV, i.e. we have
to assure that the boundary values at both sides of x, are identical

lim yi(z1,t) = lim ys(z2,t)

T1—Tp T2 —Tp

4
yi(@b,t) = y2(2b, 1) . 2
To fulfill equation (2) one simply has to arrange all elements of the

output yi(zv,t) resp. y2(zn,t) to pairs of port variables. These
port variables constitute ports, that only have to be connected to
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Fig. 1. Two connected string models. y1(x1,t) and y2(z2,t) are
the solutions of nth order PDEs.

the appropriate ports (the ports that share the same boundary re-
gion OV) of the other block elements. The result is a simple
network of multi-port block elements, equivalent to electrical net-
works.

3. INTERACTION TOPOLOGY

For a discrete solution of this network of block elements, a clas-
sical method from network theory is applied in this section, the
realization with wave digital filters.

3.1. Discrete realization with wave digital filters

Wave Digital Filters (WDFs) provide an elegant and efficient me-
thod to solve continuous networks in the discrete time domain.
A detailed description of WDFs can be found in [4]. Their main
advantage in this context is the discretization process [5]. The dis-
cretization is not performed as a whole, but separately for each
network element by the bilinear transformation . Potential compu-
tational problems, e.g. delay-free-loops, are avoided by the defini-
tion of the so called wave-variables

W) - [ A o
blk] - I R vik] | °
The vectors a[k] and b[k] are called the incident and the reflected
wave, respectively. This transition from the “Kirchhoff” variables
y[k] and v[k] (K-variables in the sequel) to the wave variables (W-
variables in the sequel) is the key step to a computable system. By
a proper choice of the matrix of port resistances R in (3), one can
achieve a delayed response for most common network elements.
WDFs offer the opportunity to separate the design of the block
elements from the definition of their interaction by appropriate
adaptor elements (see [4]). The implementation of the interaction
topology can even be automatized and realized during execution
as described in [2], what makes them the method of choice for
block-based physical modeling.

3.2. Transition to wave digital filter models

However, a wide range of physical modeling techniques are not
based on W-variables. In fact, two of the three physical model-
ing techniques employed in the example application scenario of
section 4 are based on K-variables, incompatible with WDF so far.

To facilitate the interaction of blocks from different model-
ing paradigms, the adaption to W-variables has been solved for
any physical modeling strategy by a method proposed in [6]. It is
based on the the general description of discrete systems by state
space structures (SSSs). Details on this procedure are not given
here, it only has to be mentioned that any discrete system can be
represented by a SSS. With slight changes in the structure and with
a proper choice of the port resistance matrix, a W-variable output
can be added to the SSS. The result is a W-variable compatible
model, regardless what physical variables the original model has
used.

4. SIMULATING THE WAVE EQUATION WITH MIXED
MODELING STRATEGIES

As a classical and widely-used example application, the simulation
of the one-dimensional wave-equation is drawn on. Alltogether
three quite different modeling techniques are used, that all fit in
the proposed approach to block-based physical modeling.

4.1. Model Overview

The one-dimensional wave equation is well known in acoustics
and may serve as a simple model for air-columns in pipes and
tubes. For a concise notation the velocity potential @ is introduced,
that is related to the pressure p and the sound particle velocity v by

0®(x,t) -, _

az_ - (1) (CB,t) - U(:I;vt) bl (4)
0d(x,t) _ 1
T = @) =t )

Using this quantity, the wave-equation can be written as

" 1.
- 5= fe(xt), (6)

where ¢ denotes the speed of sound in the media and fe(x,t) =
~Yo(x — ®e) - fe(t) is an excitation that acts only in the point z..

Three different implementations are bonded together in the
discrete-time domain with the proposed approach as described in
section 3. An overview of the complete implementation is given in
Fig. 2.

aj[k] a;[k]
éRHR FTMDCFDTD R HRtg
0 +1 b section section i "7 0

bi[k] b.[k]

| ]

excitation port

Fig. 2. Connection of two physical identical string segments mod-
eled with different methods. Due to the identical port resistances,
the adaptor between the string segments simplifies to an exchange
of the W-variables. The string implemented with the FTM is ex-
cited by an external excitation at Z.
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As described in section 2.2 and can be seen in Fig. 2, the
input and output of each block is needed in terms of W-variables
in order to connect the different blocks. For this purpose, it is
necessary to convert the K-variables into W-variables and to define
a port resistance R (see [4] for details). The port resistance has the
physical meaning of the relation between the port variables. For
mechanical waves, mechanical impedance is defined as ratio of
force and particle velocity. Here the output variable ® (x, t) (sound
pressure units) and the input variable ®'(x,t) (particle velocity
units) are used, both related in terms of responsiveness [7].

Therefore equation (6) is solved for ®(0,t) resp. ®(I,t) and
the boundary conditions are defined as

' (0,1) = Do(t), ' (1,t) = B(t) .

Here [ denotes the length of the air column. Furthermore homoge-
neous initial conditions are assumed.

4.2. The finite difference time domain block

The Finite Difference Time Domain (FDTD) method is based on
a central finite difference scheme of both time and space deriva-
tives of the wave equation. Second order derivatives for the one
dimensional case can be expressed as follows [8]

" ~ ®(k+1,n) —2®(k,n) + ®(k — 1,n)

A2 @)
x

= O(k,n+1)—28(k,n) +2(k,n—-1)

b ~ o ®

In discrete form, time and space positions are denoted as & =
x/Az and n = t/At, where Az and At are the temporal and spa-
tial sampling intervals. These sampling intervals must be related
by Az = cAt to assure numerical stability and to avoid truncation
errors and numerical dispersion [8].

In order to achieve solvable equations, slightly changed PDE
and BCs are used

1 . .
= " = fe, )

BC : &'(2,t)]em0 = ®)(t), &' (z,t)]emt = B)(t).

PDE : pAd—

In this case, the discrete solution of the one-dimensional wave
equation yields
d(k,n+1) =&k —1,n) + Dk +1,n) —d(k,n—1)
+ P At(fe(k,n) — fe(kyn—1)) . (10)

The boundary conditions in (9) require the use of first order deriva-
tives of variables. These derivatives are approximated using back-
ward differences

®(k,n) — ®(k —1,n)

s
P~ Ao an
s ®(k,n) — ®(k,n —1)
$ ~ ~ : (12)
resulting in the discrete equations
. . Az ., .,
®(0,n) =2(1,n) — E(‘I’o(") — &5(n—1)) 13)
B(Lom) = B(L ~ 1,m) + Z2(F{(n) — din—1))  (14)

where L = [ /Az.

4.3. The functional transformation method block

The Functional Transformation Method (FTM) solves the PDE
with help of suitable time-frequency and space-frequency trans-
formations. Details on the procedure are given in [1], here only
the results are presented. A similar application and extensions to
the theory can also be found in [9].

The FTM starts directly from the vector PDE (1). The partic-
ular equation is

® 0 -1]10[&]1_ [ o
Ll W ale =l %] e
This equation is solved analytically via a transfer function model
yielding the relation

o0

Z Cos (%x) ceInt i

+ [eos (BTw0) felt) + @6(8) + (-1 @i(1)] . (16)

where w,, = p7 is the frequency of the p-th harmonic.

A discrete implementation of (16) can be achieved by a set
of second order recursive systems, each simulating one specific
harmonic of the system, see [1] for details.

®(z,t) =

o~ =

4.4. The terminating wave resistances

The simplest parts of the model are the terminating wave resis-
tances. In this example memoryless port resistances are used, that
simplify to a non-reflecting WDF, as it is already depicted in Fig. 2.

By adjusting the values of the port resistances it is possible to
simulate perfect reflection, negative perfect reflection, zero reflec-
tion, and all values in between. The zero reflection scenario can be
used to model free field conditions.

4.5. Results

All discrete implementations are adopted to W-variables according
to [6], except for the port-resistances which are already in their
“native environment”. The resulting WDF are plugged together
by so called parallel adaptors (see [4]). The adaptor between the
FTM and the FDTD segment simplifies to a wave-bridging, as the
port resistances of the models have the same value, the speed of
sound c.

The speed of sound is set to 3007 . The length of the FTM part
is 1m and the FDTD part is 0.5m . The sampling rate is 150,000
Sa/s, resulting in 500 harmonics below the Nyquist frequency for
the FTM part and 250 discrete points for the FDTD simulation.

Fig. 3 depicts the simulation of perfect reflection at the right
side and simulated free-field conditions at the left side. The lat-
tice indicates the parting line between FTM section (left side) and
FDTD section (right side). Both, free-field simulation and model
crossover look promising.

To analyze errors, a slightly changed scenario is procured.
Both ends of the model are terminated to simulate free-field con-
ditions. Again the simulation looks good (see Fig. 4), however a
more in depth examination shows simulation inaccuracies. After
hitting the ends of the model (at about ¢ =4.1ms), the impulse ide-
ally should vanish completely, and the model should loose all its
energy. However, plotting the output in a logarithmic scale (refer-
ence value is the initial amplitude of the impulse) shows non-zero
reflections.
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Fig. 3. Simulation of the one-dimensional wave-equation with
mixed modeling techniques. The left part is modeled with the
FTM, the right part with the FDTD method, and the boundaries
with WDFs. The lattice denotes the border. The model was ex-
cited with a band-limited impulse.

As it can be seen in Fig. 5, there are large differences in per-
formance between the methods. The FTM-part damps the incident
waves by over 60 dB, while the FDTD part only scores 27 dB.
One reason is certainly the different size of the simulated region,
but there are also principal differences in accuracy. Nevertheless,
improvements can always be achieved by a higher number of har-
monics resp. simulated points.

5. CONCLUSIONS

This paper has considered the physically correct interaction in a
block-based physical modeling environment for digital sound syn-
thesis. The realization of such an environment should not bur-
den the user with interfaces, impedance maching, conversion of
variables, and alike. Instead, a high level modeling approach is
required, which handles the connection of blocks from different
modeling paradigms in a physical meaningful and thus reliable
fashion.

It has been shown that a successful connection of different
physical models can be achieved if the block outputs comply with
the wave digital filter paradigm. It is the key feature of the pre-
sented approach that a wave-variable port can be attached also to
blocks realized with finite difference methods or functional trans-
formation models.
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