
USING AUDIO FINGERPRINTING FOR DUPLICATE DETECTION AND THUMBNAIL
GENERATION

Christopher J.C. Burges, Daniel Plastina, John C. Platt, Erin Renshaw, and Henrique S. Malvar

Microsoft Research
One Microsoft Way, Redmond, WA 98052, USA

ABSTRACT

Audio fingerprinting is a powerful tool for identifying file-
based or streaming audio, using a database of fingerprints.
This paper presents two new applications of audio finger-
printing: duplicate detection, whose goal is to identify du-
plicate audio clips in a set, even if they differ in compres-
sion quality or duration, and thumbnail generation, which
aims to provide a representative short clip of a music track.
Neither application requires an external database of finger-
prints. Thanks to the robustness of the fingerprinting en-
gine, both applications perform well; the duplicate detector
has a false positive rate that is conservatively bounded above
by 1% on a very large data set, and the thumbnail generator
significantly outperforms using a fixed window.

1. INTRODUCTION

Audio fingerprinting (AFP) is a powerful method for iden-
tifying audio, either in streams or in files [1]. In this paper,
we explore two new AFP applications: duplicate detection
and audio thumbnail generation. In duplicate detection, we
aim to identify duplicate audio files based only on the au-
dio data, even if one is a noisy version of the other, or if
they have different durations. Duplicate detection is useful
for automatically cleaning large audio collections. In au-
dio thumbnail generation, the task is to find a short (we use
15 seconds) representative section of the music – a “thumb-
nail.” Audio thumbnails can help improve audio browsing,
either in simple plain list interfaces, or in more complex
multidimensional ones [2].

In previous work on thumbnails, in [3] a representa-
tive segment is searched for by maximizing similarity to all
other segments in the clip: detailed results are given on four
pieces of music. In [4], fixed length segments are clustered,
heuristics are used to choose the thumbnail, and results are
given on 18 Beatles’ songs. Both methods use Mel Cepstral
features. Here, we instead use a feature set that has been
trained to be robust against a variety of distortions, and we
present results on the overall quality of the thumbnail using
blind testing on a larger data set.

We build these two applications using the RARE (Ro-
bust Audio Recognition Engine) AFP system [5], which
converts a segment of audio to 64 floating-point numbers (a
fingerprint), and identifies clips using a weighted Euclidean
distance. RARE has been shown to be very robust to distor-
tions of the original audio [5]. In the following, “trace” will
mean any kind of fingerprint extracted from audio, and “fin-
gerprint” will mean a reference fingerprint against which
traces are compared to determine the audio identity.

2. THE RARE DUPLICATE DETECTOR

The RARE duplicate detector DupDet works as shown in
Fig. 1, recursively processing all audio files in a directory
tree. It creates a set of traces for each file, and checks them

�����

������	
��

�������	��

��������	

������	�����	

��������

����	������	�

�������	�����

���������	�

��������������	

������

 	�

!	����	

���	�

"�#	��	�������	�

��������	������

��������

���	������$%

$���	�	���� ��&�'���

(�

 	�

)����

������

*�������������

�������	�����

�����	��

���	�����

*������	�����

����������������	

(�

 	�

 	�

(�

(�

Fig. 1. Basic flowgraph of the duplicate detector.

III - 90-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

against a set of fingerprints created for the other audio files.
If the normalized Euclidean distance D(·, ·) between a trace
and a fingerprint falls below a fixed threshold DT [5], the
associated audio files are declared to be duplicates. For each
file, the fingerprints are computed at a fixed location L in
the file, and the traces are computed in a search window W
around L; L and W are user defined.

DupDet creates fingerprints and checks for duplicates in
one pass. When the first audio file is read, a 6s fingerprint
at location L is computed. When the second audio file is
loaded, traces that begin in the window W − L to W + L
are computed in intervals of 1/6 s. If one of these traces is
a match, the file is declared a duplicate and added to the list
of duplicates for that fingerprint. No external database of
fingerprints is needed, and the amount of data loaded at run
time is of order 2 MB. If no match is found for the entire set
of traces in the search window, then the fingerprint is saved
in the database, representing a (so far) unique clip. The
system also uses 6 ‘veto fingerprints,’ (fingerprints collected
from noise, sound cards with no input, etc.): audio files that
match a veto fingerprint can then be labeled as ‘junk files.’

We ran DupDet on 41,490 audio files comprising the
collections of 15 users, and set L = 40s, W = 5s, and
DT = 0.1. 436 files were unreadable and 63 were identi-
fied as noise thanks to the veto fingerprints. Of the 21,322
files for which one or more duplicates were detected, we
found 259 mismatches (1.2%), due to either mislabeling in
the database, or to an error by the duplicate detector. Since
for almost all of these mismatches, the RARE score is well
below threshold, the offset is zero (or close to zero) seconds,
and the few we checked were mislabels, most mismatches
are likely due to mislabeling rather than true errors, so the
1.2% figure is a loose upper bound on the false positive rate.

Some statistics of DupDet are shown in Fig. 2. The
top panel shows a histogram of the number of duplicates
found. The log linear plot shows the Poisson nature of the
distribution, indicating that the occurrence of duplicates is
roughly a binomial random process. The center panel is a
histogram of optimal matching scores; 95% of matches oc-
cur with score less than 0.026, and 99% with scores less
than 0.067 (the threshold score that RARE uses to identify
audio is 0.14[5]). The highest score was 0.09948, which
corresponded to the two copies being different mixes of a
Beatles song. The bottom panel shows a histogram of off-
sets, in seconds, where the center bar (of height 8,450) has
been removed for clarity. Here, 95% of matches occur at ab-
solute offsets less than 0.557s, and 99% at less than 2.04s.

3. AUDIO THUMBNAILS

The RARE audio thumbnail generator GenThumb works as
shown in Fig. 3. The goal is to find parts of the audio that
repeat within the audio clip [4]. Thus if a song has a cho-

� ' + , - .� .' .+ ., .- '�
.�

�

.�
/

���0��	12�#	�������	�����	������������	�

� �3�. �3�' �3�4 �3�+ �3�/ �3�, �3�5 �3�- �3�6 �3.
�

.���

'���

4���

7�����������������8	���1���	��9����	���������	�

�/ �+ �4 �' �. � . ' 4 + /
�

/��

.���

:����������	��������;
0����	������	�����2

Fig. 2. Results of duplicate detection on 40,991 audio files.

rus and all chorus instances are similar, the system will be
able to identify the chorus, and use that to construct a good
thumbnail. GenThumb also uses a measure of spectral flat-
ness and a measure of spectral energy to decide between
different pieces of the audio that repeat. These measures
also allow GenThumb to generate a thumbnail even if the
audio contains no repeats. GenThumb uses audio finger-
printing to find repeating sections, since we expect similar
sections of music to generate similar fingerprints. Using the
fingerprints rather than attempting to match the original au-
dio has two advantages: (1) due to the robustness of RARE
to distortions, variations of the same segment within a song
will often still give similar fingerprints, and (2) fingerprints
are low-dimensional representations of the original music,
so handling them instead of the audio is more efficient in
terms of both memory and CPU usage. GenThumb com-
putes three features from the audio to use for chorus detec-
tion: a ‘cluster feature’ FC , which is a fingerprint and asso-
ciated normalization, an ‘energy feature’ FE , and a ‘spec-
tral flatness feature’ FF (with FE and FF computed from
the same segment as FC).

The goal is to use these features to distinguish voiced
choruses from purely instrumental repeated phrases, since
the former are believe to be more mnemonic. Also, fea-
tures FE and FF are used when the FC features can’t lead
to a good chorus. GenThumb computes fingerprints that
are approximately 3s long by concatenating 16 windows of
372 ms, each overlapping by 50% (the last layer of the DDA
network was retrained for 3 second outputs [5]). All features
FC , FE , and FF are computed using these 372-ms frames.
Three seconds was chosen as a good fit for chorus detection.

III - 10

➡ ➡

����������	���	���

��������	������<

&��4������	���

�����	�������	

9
����������

�����������	;

��#	

<�&�<=��<�>�<�? 	�

(�

 	�

(�

<���<.

Fig. 3. Basic flowgraph of the thumbnail generator.

3.1. Feature Computation

The fingerprints are computed as in [5], with spectral mag-
nitudes evaluated at each frame. The features FE and FF

both use an average spectral magnitude as a normalization
factor, so they are independent of overall volume. To ob-
tain FE , we compute a normalized energy by dividing the
mean per-frequency-bin energy within the frame by the av-
erage of that quantity over all frames. This quantity is again
averaged over the 16 frames that contribute to a given fin-
gerprint. For the spectral flatness FF , we compute the log
normalized geometric mean of the magnitudes, where the
normalization is performed by subtracting the per-frame log
arithmetic mean of the magnitudes. The idea is that if the
spectral energy is spread evenly throughout the frequency
bins, then this quantity will be much larger than if it is con-
centrated across a few frequency bins. Finally, just as for
the spectral energy FE , this quantity is computed per fin-
gerprint, by averaging over all frames that contribute to that
fingerprint. Thus, FE and FF measure spectral energy and
spectral flatness per fingerprint, respectively.

We found that high values of FF usually indicate a full
sound (e.g. when vocals dominate this quantity tends to be
high). Fig. 4 shows the per-trace quantities computed for
the song “Buckets of Rain” by Bob Dylan; the top curve
is FF , the bottom is FE . In this case FF tracks the voice
well: the song consists of 5 verses, and each verse is split
temporally in two by a short instrumental. However, FF

is not always predictive of voiced music. For this reason
GenThumb primarily uses FC ; FE and FF are used only
when FC does not give a clear choice.

� .�� '�� 4�� +�� /�� ,�� 5�� -�� 6�� .��� ..��
�'

�.

�

.
(�����8	������	�	���;��#	���	���	������	

� .�� '�� 4�� +�� /�� ,�� 5�� -�� 6�� .��� ..��
�-

�,

�+

�'
(�����8	�������	��	�����	��;��#	���	���	������	

Fig. 4. Normalized log means for a song with 5 verses.

3.2. Cluster Computation

Traces for the whole song are computed, together with their
normalization factors [5]. Traces are then added to ‘cluster
sets’ Ci. A trace T1 is added to a cluster set Ci if there is a
trace T2 that is a member of Ci and that satisfies two con-
ditions: (1) D(T1, T2) < θ, where θ is a threshold, and (2)
T1 must be temporally separated from T2 by a fixed mini-
mum duration Y (we use 6s). Condition (2) is required to
prevent adding traces that are similar just because they oc-
cur nearby. If a trace does not meet both conditions, for all
cluster sets created so far, then it is added to a new cluster
set. In this way, the number of cluster sets is grown until
all traces are accounted for, and each cluster set contains
one or more clusters of traces. A cluster is defined to be a
collection of traces which is separated from all other such
collections by at least Y . Once a cluster set has been cre-
ated, it is added to recursively, until no more traces can be
added. Once all traces have been processed, we determine
the multiplicity mi as the number of clusters in Ci.

The steps above are performed for an initial value of
the threshold θ = θ1. If the maximum multiplicity of the
resulting cluster sets is at least three, then that collection of
cluster sets is used; otherwise, θ is incremented by a small
amount, and the above computation is repeated, as shown
in Fig. 3. This procedure also stops if θ ≥ θU for a fixed
upper bound θU . In this way, the search criteria for forming
clusters is incrementally loosened until either at least three
clusters are found, or until further search is unlikely to find
good clusters.

3.3. Choice of Cluster Set

If the clustering procedure finds no cluster sets with mi > 1,
then we resort to using the energy measures alone: we con-

III - 11

➡ ➡

sider only fingerprints whose FE is in the top third of the
values of FE for the whole song, to avoid quiet parts of the
song. For the traces that survive this test, that trace whose
surrounding 6s has the highest FF is taken to be the opti-
mal trace. If the clustering did result in at least one cluster
set with mi ≥ 2, the remaining tasks are (1) to choose a
good cluster set (which is likely to contain a fingerprint in-
dex corresponding to a chorus or repeat instrumental), and
(2) to use that fingerprint to pick a suitable 15s thumbnail.

The quality of the clustering in a given cluster set C is
measured using a scaled Renyi entropy R, in order to favor
clusters that are evenly spread in time over clusters that are
not. R is computed by normalizing the duration of the entire
song to 1, and then scaling the center of each cluster to lie
in the interval [0, 1]. Let the time position of the ith cluster
be ti, and let C contain N clusters. Setting t0 = 0 and
tN+1 = 1, then R is defined as

R =
N + 1

N

(
1 −

N+1∑
i=1

(ti − ti−1)2
)

Since
∑N+1

i=1 (ti − ti−1) = 1, and since ti ≥ ti−1, the dif-
ferences ti−ti−1 can be interpreted as probabilities, so R is
linearly related to the Renyi entropy for the corresponding
distribution. The offset and scaling factor have been chosen
so that R takes the maximum value of 1 and minimum value
of 0, for any number of clusters N . This allows us to com-
pare the quality of the spread of sets of clusters even when
those sets contain different numbers of clusters.

Sometimes the spectral flatness feature FF doesn’t pre-
dict voice sections well. In those cases FF tends to not vary
much through the clip. Thus, we weight the FF feature
by its standard deviation: let smax and smin be the maxi-
mum and minimum standard deviations of a set of valida-
tion songs (only the central part of each song is used, to
skip quiet introductions and fades). Define the linear map-
ping (a, b) by asmin +b = 0 and asmax +b = 1. Suppose a
test clip has standard deviation s, and compute y = as + b.
Replace y by ȳ ≡ min{max{y, 0}, 1}, and linearly map all
values of FF for the clip to the interval [0, ȳ].

Finally, each cluster set is ascribed a mean spectral flat-
ness quality, which is just the mean of the scaled values
FF for the fingerprints in that set. Thus each set now has
two numbers associated with it: one measures cluster spread
quality, and varies from 0 to 1, and the other measures spec-
tral spread quality, and varies from 0 to ȳ, where ȳ is at
most 1, and where it is large for those songs whose variance
in their spectral spread is large. The best set is chosen to be
that one for which the sum of the square of these two num-
bers is the highest. Once a set has been chosen, that trace
with largest surrounding spectral energy in the set is chosen,
and the thumbnail is taken as the 15s of surrounding audio.

3.4. Results

To test GenThumb, we wrote a testing tool that presents two
thumbnails to a user, who then rates them each on a scale of
0 to 5, corresponding to the thumbnail containing ‘Voiced
Title’, ‘Repeating Voiced Words’, ‘Any Other Vocals’, ‘In-
strumental Only, Repeating’, ‘Instrumental Only, Not Re-
peating’ and ‘Other (e.g. Applause)’. So, lower scores
are indicative of a higher quality thumbnail. The reference
thumbnail generation method for comparison was to take
the 15s starting 30s into the song, which was found to work
well in many cases. For any given song the user is presented
with the two thumbnails blindly, to prevent bias; the objec-
tive scoring method descibed here was chosen since users
may not be familiar with the music.

GenThumb was tested on 68 songs, with lengths greater
than 30s. GenThumb achieved an average score of 1.0, and
the reference method had an average score of 1.38. A signed
rank test (Wilcoxon) on the scores indicates that GenThumb
performs better than the reference method at a confidence
level of 99.9%.

4. CONCLUSIONS

Audio fingerprinting has uses beyond the simple identifica-
tion of music. We have shown that it can be used to de-
tect duplicate audio files in large databases, even if the du-
plicates are compressed differently, or have different dura-
tions; in fact in the latter case, by aligning the matching fin-
gerprints, the locations where the two files differ can be au-
tomatically detected (and if necessary checked with further
fingerprint matching). We have also shown that by search-
ing for repeated musical phrases within a single piece of
music, representative sections of the music can be found
automatically, which can then be used to create thumbnails
that greatly facilitate browsing.

5. REFERENCES

[1] P. Cano, E. Batlle, T. Kalker, and J. Haitsma, “A review of
algorithms for audio fingerprinting,” in Proc. Int. Workshop
on Multimedia Signal Processing, St. Thomas, Dec. 2002.

[2] E. Brazil, M. Fernström, G. Tzanetakis, and P. Cook, “En-
hancing sonic browsing using audio information retrieval,” in
Proc. Int. Conf. Auditory Display, Kyoto, July 2002.

[3] M. Cooper and J. Foote, “Automatic music summarization via
similarity analysis,” in Proc. Third Int. Symposium on Musical
Information Retrieval, Paris, pp. 81–85, Sept. 2002.

[4] B. Logan and S. Chu, “Music summarization using key
phrases,” in Proc. IEEE ICASSP, Vol. 2, pp. 5–9, June 2000.

[5] C.J.C. Burges, J.C. Platt, and S. Jana, “Distortion discrimi-
nant analysis for audio fingerprinting,” IEEE Trans. on Speech
and Audio Processing, vol. 11, no. 3, pp. 165–174, May 2003.

III - 12

➡ ➠

