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ABSTRACT

This paper describes a novel approach for audio stream seg-
regation of multi-pitch music signal. We propose parameter-
constrained time-frequency spectrum model expressing both
harmonic spectral structure and temporal curve of power en-
velope with Gaussian kernels. MAP estimation of the model
parameters using EM algorithm provides fundamental fre-
quency, onset and offset time, spectral envelope and power
envelope of every underlying audio stream. Our proposed
method showed high accuracy in pitch name estimation task
of several pieces of real music performance data.

1. INTRODUCTION

Multi-pitch audio signal analysis has been one of the im-
portant subjects in speech processing and music processing
areas. Automatic music transcription and signal-to-MIDI
conversion technique have been expected to be useful for
music information retrieval purpose, which is one of the
most attractive issues in the recent music processing area.
These transformation works as a data compression allow-
ing fast and flexible query search in the large existing mu-
sic content database. Sound source separation has been, as
always, a big concern in many research areas, e.g., robust
speech recognition, audio coding and others.

Contrary to its high demands, however, the standard level
of the numerous conventional methods has been far from a
practical step. Yet the recent novel ideas, e.g., filter-bank
approach[1], Kalman filtering based approach[2], signal-
level and spectrum-level model approximation approach [3]
[4], brought remarkable progress. While multi-pitch anal-
ysis is basically an ill-posed problem of finding likely so-
lutions in time-frequency space, these methods made the
problem solvable by dealing with each dimension separately:
first extract accurate frequency-dimension information (e.g.,
pitch or pitch likelihood) from each short time segment and
then give overall solution in long time interval by combin-
ing every local information together.

Apart from the common attempts based on dynamic in-
tegration of all subsequent local information in frequency-
dimension, that often blinds us to the global perspective of
time-frequency structure, our proposed method tries to find

Fig. 1. Spectrogram of music signal ranging from T0 to T1

in time direction and from Ω0 to Ω1 in frequency direction

optimal solutions directly throughout the time-frequency (2-
dimensional) plane.

2. GAUSSIAN KERNEL AUDIO STREAM MODEL

2.1. Problem Formulation
As shown in Fig.1, multi-pitch music signal is a complex
mixture of multiple audio streams each of which is associ-
ated with an musical note event. Segregating the mixture
distribution into each spectrum is hardly a straightforward
problem mainly because of spectral overlapping caused by
spectral widening phenomena in short-time analysis. We
adopt fuzzy-clustering-based approach for decomposing time-
frequency plane into multiple striped-territories each of which
occupies prospective spectral components of a single partic-
ular audio stream, under consideration that spectral distribu-
tion is a sort of histogram of “micro-energy” patterns.

Provided that each cluster assumes a geometric distri-
bution p(x, t|Θk) modeling power spectrum of a single au-
dio stream (see Fig.2) determined by parameter Θk (Θ =
{Θk|k = 1, · · · , K}), a particular form of the objective
function for this clustering is given as

K∑
k=1

∫ T1

T0

∫ Ω1

Ω0

(
p(k|x, t,Θ)f(x, t)

)
×D(x, t|Θk)dxdt (1)

where x, t and f(x, t) are log-frequency, time(frame) and
spectral density of wavelet transform spectrum, T0, T1 and
Ω0, Ω1 are the lower and higher bounds of time(frame) and
log-frequency ranges, k and K are the index and the total
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number of clusters, respectively. p(k|x, t,Θ) is a member-
ship probability of the kth cluster at the coordinates (x, t),
depending on every model parameter Θ, so that p(k|x, t,Θ)
f(x, t) means the spectral density of segregated audio stream.
D(x, t|Θk) is a measure function that suggests how domi-
nant the kth model is at the coordinates (x, t). To put it
more plainly, when the integral of the model density func-
tion has to be always equal to that of the given spectrum,
i.e., a situation that p(x, t|Θk) must satisfies

K∑
k=1

∫ T1

T0

∫ Ω1

Ω0

p(x, t|Θk)dxdt =
∫ T1

T0

∫ Ω1

Ω0

f(x, t)dxdt = F,

(p(k|x, t,Θ)f(x, t))D(x, t|Θk) takes greater value if the
two distributions, p(x, t|Θk) and p(k|x, t,Θ)f(x, t), get
closer to each other. Hence approximating the given over-
all spectral distribution by the mixture of multiple audio
stream models leads to maximizing Eq. (1). This equation
is substantially same as Q function in EM algorithm partic-
ularly when D(x, t|Θk) = log p(x, t|Θk). The optimally-
determined membership probability p(k|x, t, Θ̂) works as a
spectral filter that only passes the target audio stream k.

In modeling the audio stream model p(x, t|Θk), we should
focus on 2 significant factors: harmonicity, and continuity
of power envelope curve. In the following, we propose ge-
ometric model reflecting aforementioned 2 factors and dis-
cuss how the model parameters are estimated.

2.2. Model Description
Roughly assuming that pitch trajectory of a single audio
stream is 1parallel to the time axis (does not depend on t), a
cutting plane of the kth audio stream model (Fig.2) at partic-
ular time t appears as Fig.3, which is a harmonic structure
model hk(x) of fundamental log-frequency µk, weighted
with power envelope curve function gk(t) (Fig.4). Hence
the kth audio stream model p(x, t|Θk) is simply expressed
as a multiplication of the 2 functions and power wk

p(x, t|Θk) = wkhk(t)gk(x) (2)

where :
K∑

k=1

wk =F,

∫ Ω1

Ω0

hk(x)dx=
∫ T1

T0

gk(t)dt=1.

Assuming ideal harmonicity, nth partial log-frequency is al-
ways located log n away from the fundamental log-frequency,
so that, given the fundamenal log-frequency estimate µk,
nth partial log-frequency estimate is µk+log n. Now if each
frequency component distribution can be approximated by a
Guassian, a single harmonic structure can be modeled with
a weighted sum of Gaussian kernels described as

hk(x) =
N∑

n=1

rk
n√

2πσk
2

exp
[
−{x − (µk + log n)}2

2σk
2

]
. (3)

1This assumption was only made for simplifying the problem and does
not limit the potential of our method. We shall leave further discussion of
modeling pitch trajectory curve to our future work.
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Fig. 2. Parametric audio stream model
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Fig. 3. Gaussian kernel harmonic structure model
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Fig. 4. Gaussian kernel power envelope model

where each weight parameter rk
n(

∑N
n=1 rk

n = 1) is exactly
related to the spectral components.

Since power envelopes may generally vary, depending
on instruments or musical expressions, the curve function
model gk(t) should be flexible enough to adapt well to every
possible envelope. We formulate this model with Gaussian
kernels each of which is weighted with ck

y(
∑Y −1

y=0 ck
y = 1),

that directly determines the shape of power envelope, where
y is the index of the Gaussian. A specific feature of this
model: the standard deviation of each Gaussian and the in-
terval of adjacent Gaussians are expressed with a same vari-
able φk, makes gk(t) a linear elastic function allowing var-
ious time lengths of audio streams. gk(t) is given as

gk(t) =
Y −1∑
y=0

ck
y√

2πφk
2

exp
[
−{t − (ok + yφk)}2

2φk
2

]
(4)

where Y is the number of the Gaussian kernels and ok is the
center of the forefront Gaussian.

The whole parameters are listed in table2.2 together with
the corresponding physical quantities or events.

3. ESTIMATING OPTIMAL PARAMETERS

3.1. A Priori Distribution
If we have a prior knowledge or an expectation of how spec-
tral and power envelopes would shape like, a priori distribu-
tion assumption for rk

n and ck
y prevents the model from ex-

cessive deviation from the ‘expected’ envelopes (see Fig.5
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Table 1. List of the free parameters of kth audio stream model
parameters model close physical corresopondence

µk mean of the forefront Gaussian kernel in the harmonic structure model fundamental log-frequency
µk + log n mean of the nth Gaussian kernel in the harmonic structure model nth partial log-frequency

wk weight relative dominance of the kth audio stream
rk
n weights of Gaussian kernels in the harmonic structure model spectral envelope

ck
y weights of Gaussian kernels in the power envelope model temporal curve of power envelope

ok mean of the forefront Gaussian kernel in the power envelope model onset time of the kth audio stream
σk standard deviation of Gaussian kernel in the harmonic structure model width of the frequency component
φk interval & standard deviation of Gaussian kernels in the power envelope model temoral length of the kth audio stream

for example). Here we apply the a priori distribution, pro-
posed by Goto[4], to {rk

n}N
n=1 and {ck

y}Y −1
y=0 given by the

exponential of nagative Kullback-Leibler distance between
rk
n, ck

y and the ‘expected’ values r̄n, c̄y

p(rk) =
1

β(dr)
exp

(
− dr

N∑
n=1

r̄n log
r̄n

rk
n

)
, (5)

p(ck) =
1

β(dc)
exp

(
− dc

Y −1∑
y=0

c̄y log
c̄y

ck
y

)
. (6)

N∑
n=1

rk
n =

N∑
n=1

r̄n = 1,
Y −1∑
y=0

ck
y =

Y −1∑
y=0

c̄y = 1

where dr and dc are the influences of the a priori distri-
butions, β(dr) and β(dc) are normalization factors. The
advantage of using this particular form is in a considerable
simplification of calculating Lagrange multipliers in MAP
estimation without affecting its substance. Instead of this
distribution, dirichlet distribution is also applicable.

3.2. MAP Estimation Using EM Algorithm
The conditional optimization problem of the time-frequency
clustering using abovementioned paramater-constrained au-
dio stream model has the same form of MAP(Maximum A
Posteriori) estimation using EM algorithm. Since the objec-
tive function in Eq. (1) corresponds to the auxiliary function
related to Q function, this can be rewritten as

R(Θ, Θ̂) =
K∑

k=1

{
N∑

n=1

Y −1∑
y=0

( ∫ T2

T1

∫ Ω2

Ω1

p(k, n, y|x, t,Θ)

× f(x, t) log p(x, t|Θ̂k)dxdt

)
+ log p(r̂k)

+ log p(ĉk) − λ(k)
r

( N∑
n=1

r̂k
n−1

)

− λ(k)
c

( Y −1∑
y=0

ĉk
y−1

)}
−λw

( K∑
k=1

ŵk−1
)

(7)

where λ
(k)
r , λ

(k)
c and λw are Lagrange multipliers. Note that

in this case, f(x, t) must be a normalized density function
and wk must satisfy

∑K
k=1 wk =1.
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Fig. 5. A priori distribution of the weight parameter rk
n

The local optimal model parameters can be effectively
calculated by iteration as follows:

1. (E-step) Compute the auxiliary function R(Θ,Θ)
by substituting Θ̂ , the updated model parameter at
the previous M-step, for Θ. This step is an update of
the membership probability density p(k, n, y|x, t,Θ).

2. (M-step) Update the parameters to Θ̂ that maximizes
the auxiliary function R(Θ, Θ̂). Θ̂ is calculated from
∂R(Θ, Θ̂)/∂Θ̂ = 0. This step is an optimal model
approximation under fixed p(k, n, y|x, t,Θ).

4. EXPERIMENTS

For the evaluation of the proposed method, it was tested
on 2 pieces of real music performance data excerpted from
RWC music database. Time series of power spectrum was
analyzed by Gabor wavelet transform with frame shift of
20ms for input digital signals of 16kHz sampling rate. The
lower bound of the frequency range and the frequency res-
olution were 50Hz and 16.7cent, respectively. The interval
of time range of time-frequency plane was 3s(150 frames).
The initial parameters of (µk, ok|k = 1, · · · ,K) for EM
algorithm were automatically determined by extracting 70
largest peaks from the given spectrum distribution. Dur-
ing the iteration of EM algorithm, the total number of au-
dio streams were estimated by thresholding, i.e., remove
every audio stream model whose weight parameter wk be-
comes smaller than the threshold. A typical example of
the optimized model and the corresponding time-frequency
spectrum are shown in Fig.6. As seen in (b) and (d), not
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(a) A given time-frequency spectrum

(c) A grayscale display of the given spectrogram

(b) The optimized model for (a)

(d) A grayscale display of the optimized model

Fig. 6. 3D and grayscale diplays of the given spectrum and the parameter-optimized model

Table 2. Results of Pitch Name Estimation

Expermiental data Accuracy(%)
Titles Instruments Previous Proposed

Crescent Serenade Guitar 85.3 92.1
For Two Piano 79.8 86.2

only pitch but onset/offset time, power envelope and spec-
tral components of every audio stream are quite appropri-
ately estimated.

We evaluated the proposed method with a simple pitch
name estimation task compared with a frame-by-frame spec-
trum approximation algorithm, proposed at the previous pa-
per [5]. In this previous algorithm, each single-frame spec-
trum is approximated by the harmonic structure model

∑K
k=1

hk(x) using EM algorithm, and then Hidden Markov Model
is applied to assemble each pitch estimates to form overall
multi-pitch trajectories. Thus the comparison between the
new and the previous methods may indicate the effective-
ness of our new idea. Although the experiment was done
with very limited test data, the results presented in table 2
show significant improvement in pitch estimation accuracy
over our previous algorithm.

5. CONCLUSION

We presented a new solution to the multi-pitch analysis prob-
lem based on time-frequency clustering using Gaussian ker-
nel geometric spectrum model. The approach addressed

in this paper has just been established and has many pos-
sibilites for future extensions. Flexible modifications are
possible within the same framework only by relaxing the
assumptions made in this paper, e.g., (1) modeling a pitch
trajectory curve with polynomial, (2) allowing a different
power envelope curve among all partial component and (3)
introducing inharmonicity factor, etc. Estimating the num-
ber of audio streams is also an interesting issue, which will
be one of the next directions of our work.
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