
Evaluation of MPEG-4 IPMP Extension
HweeHwa Pang, Yongdong Wu

Institute for Infocomm Research(I2R)
21, Heng Mui Keng Terrace, Singapore
{hhpang, wydong}@i2r.a-star.edu.sg

Abstract— MPEG-4 IPMPX (Intellectual Property Manage-
ment and Protection eXtension) is the latest ISO standard which
provides a flexible framework for protecting MPEG streams.
The message mechanism of IPMPX enables inter-operability
among IPMPX-compliant devices no matter which protection
methods are embedded. This paper highlights several problems
in the message syntax of IPMPX: the tool delivery message
IPMP ToolES AU is vulnerable to network attack, the authenti-
cation message IPMP Mutual Authentication is incapable of
defending against forgery attack, and the configuration message
IPMP SelectiveDecrptionInit is ambiguous and redun-
dant. We propose a number of remedies to those problems, which
can be incorporated into a corrigenda to improve the present ISO
MPEG-4 IPMP standard.

I. INTRODUCTION

Buying electronic contents typically entails browsing the
seller’s Web site (e.g. http://www.amazon.com), search-
ing a database, and paying with a credit card before the
content is rendered. Since digital content can be copied and
disseminated easily and without any degradation in quality,
the publishing industry stands to lose $1.5 billion through
piracy by 2005 [1]. Naturally, publishers, distributors, and Web
retailers are looking for safe and effective ways to manage
their intellectual property.

In response, many companies have developed rights man-
agement systems or solutions, such as MediaplayerTM and
RealNetworkTM . This multiplicity of solutions has proved
more a curse than a blessing, as most of the systems are
incompatible with each other [2]. That is to say, a piece
of protected content can be consumed on some designated
devices/systems only. To achieve economy of scale, this has
to change; “legitimate” content distribution methods need to
become interoperable. Thus, it is desirable to standardize the
interface for the protection methods, particularly those for
multimedia content that has high market value.

MPEG-4 [3] [4] is an excellent multimedia standard for dig-
ital television, interactive graphics applications, and interactive
multimedia. To safeguard Intellectual Property in the form
of MPEG-4, IPMP [5] defines the hooks for the protection
methods after MPEG-4 became an International Standard in
1999. To enhance inter-operability, the newer MPEG-4 IPMPX
(MPEG-4 part 13) [6] [7] was finalized recently. It not only
enables IPMP-compliant devices to render content within
an MPEG-4 terminal, but also provides a framework with
normative messages to select and configure the most effective
and appropriate tools. Following the principle of IPMP, several
works (e.g. [8] - [11]) proposed flexible ways to protect

MPEG-4 content in a controlled manner. However, although
the IPMPX message mechanism [7] is sound, some message
syntaxes are problematic. Specifically, the tool delivery mes-
sage IPMP ToolES AU is vulnerable to network attack, the
authentication message IPMP Mutual Authentication
can be used for forging tools, and the configuration message
IPMP SelectiveDecrptionInit is ambiguous. We pro-
pose to patch those weaknesses in an upgrade of the standard.

The reminder of this paper is organized as follows. Sec-
tion II gives an overview of the MPEG-4 IPMP extension;
readers who are familiar with IPMPX can skip the section. In
Section III, we focus on some clauses such as authentication
protocol and Decryption Initialization, and elaborate on their
weaknesses. For each weakness, we propose some remedies.
Finally, Section IV summarizes our conclusion.

II. MPEG-4 IPMP EXTENSION

To make the paper self-contained, we excerpt the following
terminology from [7].

Terminal: An environment that consumes possibly protected
content in compliance with the usage rules.

Tool: A module that perform (one or more) IPMP functions
such as authentication, decryption, watermarking, etc. Concep-
tually, the use of one or more Tools is combined to perform
the functionality of an IPMP system.

Tool Manager: A conceptual entity within a terminal that
processes tools and retrieves the tools that are specified therein.

Tool Message: A message passed between any combination
of tool or terminal.

ES: Elementary Stream is conceived as a flow of data that
originates from a single source in the sender and terminates in
a single sink at the receiver. An IPMP ES is used for delivering
data related to IPMP tools.

A. IPMPX

The architecture of IPMPX is shown in Fig.1, where the
terminal provides the user interface, manages the tools, and
communicates with the content provider. Each tool is asso-
ciated with a unique ID assigned by a registration authority
(www.ipmp-ra.org), or a proprietary IPMP system.

Fig.2 refines the MPEG-4 system architecture. In a typical
application, a terminal requests digital content and down-
loads MPEG-4 content which includes an IOD (initial ob-
ject descriptor). The IOD includes IPMP Descriptor and
IPMP ToolListDescriptor. Each IPMP Descriptor
is identified with an IPMP DescriptorlID. Possibly, it

II - 11610-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

Terminal-Tool Message Interchange Interface�

IPMP Tool 1� IPMP Tool 2� IPMP Tool � n�

IPMP Information�

Content�

IPMP Tool ID(s)�

Alternate IPMP Tool ID(s)�

Terminal�

Missing IPMP�
Tools�

Obtain Missing IPMP�
Tool(s)�

Content Request�

Content Delivery�

Terminal-IPMP Tool�
Communications�

IPMP Tool List�

IPMP Tool Elementary�
Stream�

IPMP Tool Manager�

Parametric Tool�
Description(s)�

...�

Fig. 1. Architecture Diagram for Walkthrough Concept [7].

also includes IPMP ToolID, the control point at which the
tool resides (e.g., decryption is performed before decoding
or after decoding), processing priority sequenceCode, and
other tool-specific data. IPMP ToolListDescriptor in-
dicates the tools to be used for processing the protected
content. The terminal examines the tool list carried in the
content stream, and instantiates all the tools needed. If
some tools are not available locally, the tool manager will
attempt to download them according to ToolURL within
IPMP ToolListDescriptor.IPMP Tool. Only after all
the required tools have been initialized, can the terminal start
to process the content. Simultaneously, the terminal may also
serve as a bridge for messages between the tools.

Fig. 2. Mapping of IPMP Extensions to the MPEG-4 system architecture [7].
The content stream contains protected content as well as tool data necessary
for consuming the content. The terminal bridges the link between the tools
and manages them, including downloading and instantiating the tools.

III. EVALUATION OF IPMPX

IPMPX defines security functionalities for tool delivery,
initialization and message exchange. This section points out
security weaknesses in the syntax definition of the trust model
and some IPMPX messages. In this section, the syntax is

described in SDL (Syntactic Description Language [3]). For
simplicity, we ignore the syntax tag and the sender/recipient.

A. Trust Model

In an IPMP system, the MPEG-4 terminal, as well
as the pre-installed tools are trusted. Additionally,
IPMPX defines the attacker profile in the data structure
IPMP TrustSecurityMetadata based on the attacker’s
resource as class I (little resource), II (some resource), and
III (unlimited resource) [2]. However, such a definition based
on resource capability is not well recognized in the security
community. Rather, the commonly accepted classification is
based on whether a system is secure against ciphertext-only
attack, known plaintext attack, etc [12].

In the key delivery semantics IPMP KeyData, the
keyBody is transmitted along with other data such as expiry
date. We think the secret keyBody should be transmitted in
a protected form instead.

B. IPMP ToolES AU

IPMPX has a major advantage over IPMP, in providing for
dynamic insertion and replacement of tools. A new tool may
be acquired from a specific site within an IPMP ES Access
Unit. 1 For transmitting a missing tool, IPMP ToolES AU
is used to actually carry the required tool, similar to the
downloading of JAVA applet in a web application. The syntax
of IPMP ToolES AU is shown in Fig.3.

class IPMP ToolES AU
{

bit(1) isSigned;
if (isSigned) {

ByteArray IPMP Tool Signature;
· · · certificates · · ·
bit(128) Verifying Tool Id;

}
bit(32) sizeOfTool;
bit(8) Tool Body[sizeOfTool];

}

Fig. 3. IPMP ToolES AU syntax [7]. IPMP Tool Signature is the
digital signature generated by a trusted authority, Verifying Tool Id
indicates the tool for verifying the requesting tool, and Tool Body is the
executable such as JAVA bytecode. “bit(n) X” means X is of n bits.

Although IPMP ToolES AU delivers the tool correctly, the
syntax has the following weaknesses:

1) Efficiency: To provide an authenticated tool, a
transmitter sends the tool and overhead including
IPMP Tool Signature and certificates, in addition
to signatures on the individual AUs. If a tool is delivered
via multiple AUs, the overhead is incurred repeatedly, thus
wasting network resource. Instead, IPMPX should define

1In an IPMP stream, discrete portions of data are associated with specific
points in time. Generally, these potions of data are called AU (Access Unit),
and each ES is modelled as a sequence of AUs [4].

II - 1162

➡ ➡

explicitly that each IPMP ToolES AU encapsulates only one
tool.

2) Security: In order to be compatible to terminals which
do not care about security, IPMP ToolES AU enables a ter-
minal to install unauthorized tools with isSigned=False.
However, when a terminal installs an unauthorized tool, it
opens a door to system crackers, and further threatens network
security. For example, if the IPMP-enabled devices from a
manufacturer accept the tools with isSigned=False, they
may be used to launch DDOS (Distributed Denial-of-Service)
like those that crashed the servers of Yahoo!, Buy.com and
eBay.com in 2000 [13]. As noted in [14]: (To start DDOS,) “
The requests were sent to Yahoo! indirectly. The attacker or
attackers actually sent a flood of requests through networks
that fraudulently listed Yahoo! as return address”. It is not
acceptable for ISO security standard compliant devices to
bring in such serious security threats to the whole networks.

Indeed, although signed applets can access system resources
(e.g. read the disk), they cannot remain on the host. However,
IPMPX not only enables to install/execute unauthorized tools,
it even allows the unauthorized tools to reside on the terminal
stealthily. We propose to disable installation of unauthorized
tools into terminals. At a minimum, a warning alert MUST be
given when an unauthorized tool is to be installed.

C. IPMP Mutual Authentication

Besides the extension to tool refreshment with
IPMP ToolES AU, IPMPX provides an authenticated
channel for tool communication. To start an authentication
process between tools and/or the MPEG-4 terminal, one tool
(initiator) sends a message IPMP initAuthentication
to the intended recipient. Following that, the two participants
execute an authentication protocol with the message format
as shown in Fig.4.

class IPMP Mutual Authentication
{

· · · · · ·
bit (1) inclAuthCodes;

AlgorithmDescriptor agreedAlgorithms[];
if (inclAuthCodes){

unsigned int type;
if (type == 1) {
// · · · certificates · · ·
} elseif (type == 2) {

KeyDescriptor publicKey;
}
· · · · · ·
ByteArray authCodes; // signature

}
}

Fig. 4. IPMP Mutual Authentication syntax [7]. The authentica-
tion algorithm agreedAlgorithm is negotiated by the participants, and
authCode is the signature of this message excluding the signature itself.

The authentication protocol comprises three steps: algorithm
agreement, signature generation and verification. Unfortu-
nately, all the steps in the present protocol require refinement:

1) Algorithm agreement: With this message, both
tools agree on a group of authentication algorithms
agreedAlgorithms[]. However, there is only one
signature authCodes, and which algorithm should be
applied is undefined. Furthermore, in practice one algorithm
is all that is needed.

2) Signature generation: A digital signature is used to
prove that one participant (i.e., a tool) owns a private key
corresponding an authentic public key. In other words, the
prover must know a private key in order to generate the digital
signature authCodes. Usually, a prover tool has two ways
to obtain the private key:

• The private key is given to the prover by the host
terminal. In this case, the prover tool is merely a signature
generation algorithm and hence can not prove its identity.

• The private key is hardcoded in a genuine tool with
code obfuscation technology [15]. If so, an attacker may
retrieve the private key through reverse-engineering so as
to construct a malicious tool, or the attacker may wrap a
malicious tool around the genuine tool. Consequentially,
a so-called “authentic” tool may in fact be malicious and
the authentication protocol fails.

3) Verification: In case of type=2, a publicKey will
be used for verifying the authCodes (i.e., digital sig-
nature). However, this authentication method is incorrect
if publicKey is not authenticated because an attacker
can forge tools easily. With regard to the attack diagram
in Fig.5, a malicious tool generates a pair of forged pri-
vate/public key, and sends to the verifier tool a bogus mes-
sage IPMP Mutual Authentication with the follow-
ing parameters: type=2, forged publicKey e, and forged
authenCodes. Clearly, the verifier will be deceived.

In general, a verifier must have some trusted public keys
to authenticate an identity with a digital signature scheme.
For example, Microsoft’s Internet Explorer embeds the public
key of a Certificate Authority (e.g. Verisign.com which issues
certificates for web sites to perform secure transactions). An
unauthorized public key is useless for authentication purposes.

 � �

Generating private �
ke�y �d� and public �

key e� �
 �

agreeAlgorithm

Signing �
with key �d� �

type=2, e
authCodes

Prover � � Ver�ifier � �

Verifying � �

Fig. 5. Forgery method when type=2.

Indeed, it is unnecessary to authenticate the tools within one
terminal since the tool is authenticated before it is installed.

II - 1163

➡ ➡

D. IPMP SelectiveDecryptionInit

For the sake of efficiency, IPMPX enables the protec-
tion of only portions of a digital content with the message
IPMP SelectiveDecryptionInit. As shown in Fig.6,
the selective decryption syntax, including cipher segment and
field segment, indicates how to decrypt the protected content.
Unfortunately, this syntax has two major weaknesses.

class IPMP SelectiveDecryptionInit
{

· · · · · ·
bit(8) numBufs;
for(i=0, i<numBufs; i++){

Struct bufInfoStruct {
bit(128) cipher Id;
//· · · cipherparameters · · ·

}
}
· · · · · ·

bit(8) numFields;
for(i=0, i< numFields; i++) {

Struct fieldStruct {
bit(8) field Id;
· · · · · ·

bit(1) sendMapTable;
bit(1) isShuffled;
if(sendMapTable){

bit(16) sizeMapTable;
bit(16) mappingTable[sizeMapTable]

}
if(isShuffled){

ByteArray shuffleSpecificInfo;
}

}
}

· · · · · ·
}

Fig. 6. IPMP SelectiveDecryptionInit syntax [7]. The data
structure bufInfoStruct is used to store the cipher parameters, and
fieldStructure indicates the protected fields such as DC (Direct Co-
efficients), MV (Moving Vector), or AC (Alternative Coefficient)

1) Ambiguity: The scope of each cipher is unclear. For
example, assume two ciphers (numBufs=2) DES and AES
are employed, and three fields DC, MV and AC are protected
(numFields=3). The simplified data structure is

DES, AES, DC, MV, AC.
It is not clear which of the two ciphers should be used to
decrypt each of the protected fields.

In view of the fact that the de facto standard SSL (Secure
Socket Layer) employs only one cipher for data delivery in
secure network applications such as Internet banking and gov-
ernment services, it is doubtful that there is really a necessity
for more than one cipher for protecting a stream. Even if
there are extraordinary circumstances that warrant two or more

ciphers, the syntax should be modified to allow multiple pairs
of <protected field, cipher> to clarify the association.

2) Redundancy: The rationale for defining mapping table is
not well founded. If mapping tables are sent on an unsecured
channel, they should be part of the decoder other than the
decrypter; otherwise, the table should be protected by a secret
key. The same comment applies to the shuffle parameter.

Furthermore, just one of shuffle or mapping table
needs to be provided for, since shuffle is just a special mapping
table. Therefore, if both features are needed, shuffle can be
merged into mapping table.

IV. CONCLUSION

The IPMP framework allows the coexistence of different
vendors’ tools, and the secure communication among the tools,
via a messaging interface. The framework also provides the
ability to download and integrate the tools into an MPEG-
4 terminal. This paper highlights several weaknesses in the
IPMPX syntax (most of those weaknesses exist in MPEG-2
IPMP [16] too), and proposes suitable remedies.

REFERENCES

[1] Forrester Research, “Content Out Of Control”, Sept. 2000
[2] N. Rump, “Can digital rights management be standardized?” IEEE

Signal Processing Magazine, 21(2):63-70, 2004
[3] ISO/IEC 14496-1:2001(E), Information technology - Coding of audio-

visual objects - Part 1: System, ISO/IEC JTC 1/SC 29/WG 11 N3850,
2000-10-19

[4] Fernando Pereira, Touradj Ebrahimi (ed.), The MPEG-4 Book, ISBN:
0130616214, Pearson Education, 2002

[5] ISO/IEC 14496-1:2001/FDAM 3:2003(E), Information technology -
Coding of audio-visual objects - Part 1: Systems, AMENDMENT 3:
Intellectual Property Management and Protection (IPMP) extensions,
ISO/IEC JTC 1/SC 29/WG 11, 2002-12-4

[6] James King and Panos Kudumakis, “MPEG-4 IPMP Extension,” DRM
2001, LNCS 2320, pp.126-140, 2002

[7] ISO/IEC 14496-13:2004(E), Information technology - Coding of audio-
visual objects - Part 13: Intellectual Property Management and Protec-
tion (IPMP), extensions, SC 29/WG 11 N 5284, 2004-05-21

[8] T. Senoh, T. Ueno, T. Kogure, Shengmei Shen, Nfing Ji, Jing Liu,
Zhongyang Huang, C. A. Schultz, “DRM renewability & interoperabil-
ity,” First IEEE Consumer Communications and Networking Conference
(CCNC), pp.424-429, 2004

[9] MIRADOR: MPEG 4 Intellectual Property Rights by Adducing and Or-
dering, http://www.cordis.lu/infowin/acts/analysys/
products/thematic/mpeg4/mirador/mirador.htm

[10] J. Lacy, N. Rump, T. Shamoon, and P. Kudumakis, “MPEG-4 Intellectual
Property Management & Protection,” 17th Conf. Audio Engineering
Society, 1999.

[11] Kwang Yong Kim, JinWoo Hong, “MPEG4 IPMP authoring system for
protection of object based contents,” The 6th International Conference
on Advanced Communication Technology, Vol.1, pp.499 - 503, 2004

[12] A. Menezes, P. Van Oorschot and S. Vanstone, Handbook of Applied
Cryptography, pp.41, CRC Press, 1996

[13] David Anderson, “Distributed Denial Of Service Attacks,” http://
wind.lcs.mit.edu/˜dga/ddos.txt

[14] Michael, Brick, and Kevin Max, “In the Wake of Web-Site Hacking,
No Easy Answers, or Solutions,” NYTimes.com/TheStreet.com, Feb.
9, 2000 http://www.nytimes.com/library/tech/00/02/
biztech/articles/10attack.html

[15] C. S. Collberg , C. Thomborson ,and D. Low, “Manufacturing Cheap,
Resilient, and Stealthy Opaque Constructs,” ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 1998

[16] ISO/IEC FDIS 13818-11:2003(E), Information technology - Generic
coding of moving pictures and associated audio information - Part 11:
IPMP on MPEG-2 systems, ISO/IEC JTC 1/SC 29/WG 11, 2003-04-17.

II - 1164

➡ ➠

