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ABSTRACT
A method of detecting and tracking moving human speech

events by integrating audio and video signals using a parti-

cle filter is proposed and evaluated. Using the particle fil-

ter, location, on/off status, and human/non-human determi-

nation can be estimated simultaneously for multiple sound

sources. Experiments demonstrate that the proposed method

performs well for the data obtained in an ordinary meeting

room using a microphone array and a monocular camera.

1. INTRODUCTION

Tracking user speech events is a very important function for

realizing robust multimedia human-machine interaction in

noisy everyday environments. Various interactive systems

including personal data assistants, video conferencing sys-

tems, and interactive robots, require such a function. The

result of tracking can be used as an input for separating the

speech signal from noise and for enhancing and recognizing

the speech.

In order to distinguish between user speech and audio

signals from interference sound sources such as television,

we have proposed to combine audio and video information

in a Bayesian framework[1]. A microphone array is used to

localize sound sources, and a monocular camera to localize

humans. These informations are then combined to compute

the posterior probability of the time and location of human

speech events.

The problem is composed of several sub-problems, such

as estimation of the number of sound sources, localization

of multiple sound sources, and estimation of the number of

humans. In a previous study[2], these sub-problems were

solved separately. We first localized multiple sound sources

and potential human speakers and then performed tracking

of human speech events using the results of the localization.

In this paper, we propose a method by which to solve

these problems simultaneously using statistical signal mod-

els and a particle filter in the Bayesian framework. Particle

filters[3] are very powerful technique for estimating a time

series of hidden variables from noisy observations. In con-

trast to Kalman filters, which are applicable only to linear
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Gaussian models, particle filters can be applied to very gen-

eral statistical signal models. In addition, particle filters are

very simple and efficient algorithms.

Checka et al.[4] applied a particle filter to the problem

of multiple human speakers and speaker activity tracking.

In the present study, we generalize their framework to in-

clude human/non-human discrimination and enhance their

statistical signal model in order to estimate human speech

intervals more accurately. Accurate estimation of speech

intervals is crucial in order to use the tracking results as in-

puts for speech enhancement and recognition.

The present paper is organized as follows. In Section

2, we introduce a Bayesian framework for tracking human

speech events. In Section 3, statistical signal models for

audio and video signals are described. Then, in Section 4,

the proposed framework and models are applied to exper-

imental data obtained in an ordinary meeting room using

a microphone array and a monocular camera mounted on

the head of a humanoid robot. In the experiment, the per-

formances of several signal models are compared. Finally,

Section 5 presents a discussion and conclusions.

2. BAYESIAN FRAMEWORK

The problem of tracking human speech events can be for-

mulated in a framework of Bayesian estimation of hidden

state sequences. As in [4], let the hidden variable vector be

X(t) = (n(t), χ1(t), · · · , χn(t)(t)),

where n(t) is the number of tracking targets and χi(t) =
(θi, si, hi) is the configuration of the ith target. The dis-

crete variable θi denotes the 2D direction of the target, the

Boolean variable si denotes audio activity (on/off). Another

Boolean variable, hi, denoting human/non-human discrim-

ination of the target, is added. Observation variables Y(t)
are composed of audio signals Ya(t) from microphones and

video signals Yv(t) from cameras.

In the Bayesian framework, the relationship between

X1|T = X(1), · · · ,X(T ) and Y1|T = Y(1), · · · ,Y(T ) is

modeled by a joint probability distribution P (X1|T ,Y1|T ).
As is often done, we assumed that the joint probability dis-
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tribution can be decomposed as

P (X1|T ,Y1|T ) =

T∏

t=1

P (Y(t)|X(t))P (X(t)|X(t − 1)).

This means that only the state transition probabilities

P (X(t)|X(t − 1)) and the observation probabilities (the

likelihood of the observation) P (Y(t)|X(t)) are needed in

order to specify the joint probability distribution. When ob-

servations y1|t are given, the posterior probability distribu-

tion P (X1|t|y1|t) is computed.

The particle filter is a kind of Monte Carlo technique

for computing and representing the posterior distribution

efficiently with random particles distributed in the hidden

variable space. Although several sophisticated particle fil-

ter algorithms have been proposed, for the present study, we

chose the simplest algorithm and use state transition proba-

bility as the proposal distribution and the likelihood of the

observation as the importance weight[3].

3. STATISTICAL MODELS

3.1. State Transition Probability

As the state transition model, a very simple random model

is used in which each target is assumed to move indepen-

dently from its current location according to a Gaussian dis-

tribution with zero mean and common variance σl. Speech

activity s and human/non-human state h changes randomly

according to transition probability. Although, in reality, h
does not change, for the sake of implementation we model

h as being able to change randomly.

3.2. Audio Signal Model

The audio signal Ya(t) is treated in the frequency domain.

Let the short-time Fourier transform (STFT) of the M mi-

crophone inputs be z(ω, t) = (Z1(ω, t), · · · , ZM (ω, t))T ,

where Zm(ω, t) is the STFT of the mth microphone input

at time t and frequency ω.

Then, for each narrow band ω, z can be modeled as

z = As + n

with location vector matrix A = (a(θ1), · · · ,a(θL)), source

spectrum s = (S1, · · · , SL)T , and background noise spec-

trum n = (N1, · · · , NM ). Here, L is the number of active

sound sources. ω and t are omitted for the sake of simplic-

ity.

As in [5], we assume that both the signal and the noise

are 0-mean Gaussian, that is, E[s, · · · , sH ] = diag(γ1, · · · , γL),
and E[n,nH ] = σnI. Then the log-likelihood function of z
becomes

L(z|X) = − log |det(Ky)| − 1

2
zHK−1

y z, where

Ky =

L∑

l=1

γl a(θl)a(θl)
H + σnI.

In [4] the likelihood is computed for each single sound

frame. In order to stabilize the likelihood values, we take

the average over N frames. This means that we use log-

likelihood

L(zt|t+N |X(t)) = − log |det(Ky(t))|−1

2
tr(Cz(t)Ky(t)−1),

where

Cz(t) =
1

N

t+N∑

k=t

z(k)z(k)H .

The observation probability for the broadband signal is com-

puted as

P (ya,t|t+N |X(t)) =
∏

ω

exp L(zt|t+N (ω)|X(t)).

However, in order to evaluate the likelihood, the values

of γl(ω, t) must be known. Although we can include γl

among the hidden variables of the particle filter, doing so

causes the hidden variable space to become enormous and

computation of the posterior distribution becomes impracti-

cal. In [4], it is assumed that γl = 1 for active audio sources

and γl = 0 for all other audio sources. This is referred to

herein as the 0/1-γ model. Because the relative power of

each active sound source changes in time, this is a rough

approximation. In particular, the power of human speech

changes greatly due to the presence of both vowel and con-

sonant sounds.

In order to cope with this problem, we introduced two

more elaborate models. The first model is a mixture of mul-

tiple models with different γl values. In this paper, a mix-

ture of three γl values, γl = 1, 0.3, 0.1 was employed. This

model is referred to herein as the multiple-γ model. In the

second model, we tried to estimate γl from the signal[5] as

γ̂l =
a(θl)

HCza(θl)

|a(θl)|4 .

This model is referred to as the estimated-γ model. These

models were compared experimentally.

3.3. Video Signal Model

For each single camera image, the video observation proba-

bility P (yv(t)|X(t)) is computed as follows. First, for each

given direction θl(t) of a human target, the color distribu-

tion around the direction is evaluated using the skin color

distribution modeled via a Gaussian distribution. Next, tem-

plate matching using face templates is executed in the local

region, and the minimum distance is evaluated by the dis-

tance distribution, which is also modeled by another 0-mean
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Gaussian distribution. For the direction θl(t) for a non-

human target, the likelihood is assumed to be uniform for

all image data. Finally, the likelihood for all of the targets

is computed by simply multiplying the likelihood values of

the targets.

3.4. Combining Audio and Video Information

For every N audio FFT frame, the total observation proba-

bilities P (yt|t+N |X(t)) are computed simply by multiply-

ing the audio and video observation probabilities. We intro-

duce a parameter w for balancing information from audio

and video. When the number of active sound sources are

changes with time, the number of hidden variables in the

signal models also changes. Hence the problem of estimat-

ing the number of active sound sources should be treated as

a kind of model selection problem. So far, there has been

proposed several model selection criteria such as AIC and

MDL. In this paper we simply discounted the observation

probability by the number of hidden variables. That is, we

introduced another parameter α, and the observation proba-

bilities finally become

P (yt|t+N |X(t)) = P (ya,t|t+N |X(t))P (yv(t)|X(t))wαNs(t),

where Ns(t) is the number of active sound sources.

4. EXPERIMENTS

4.1. Conditions

The performance of the proposed framework and models

was evaluated using data obtained in a medium-sized meet-

ing room with a reverberation time of approximately 0.5

s. As shown in Figure 1, the microphone array and cam-

era were mounted on the head of a humanoid robot HRP-

2 developed in AIST[6]. The robot head was placed on a

computer controlled turntable that was rotated at a constant

speed. A standing human speaker uttered a number of sen-

tences in Japanese separated by pauses. As the interference

sound, a loudspeaker played music continuously. The S/N

ratio is about 0 dB. The configuration of the robot head, the

human, and the loudspeaker is shown in Figure 1.

4.2. Results

Audio signals from eight microphones were sampled at 16 kHz.

The length of the Fourier transform window was 512 and the

frame shift was 128. The range of frequency ω was [800,

3000] Hz. The camera provided 320 x 240 images at 30

frames per second. The maximum number of targets in this

experiment was two. The direction of targets θ was quan-

tized into 3-degree segments, i.e., 120 direction bins were

created. We chose the averaging interval N = 9 (about 0.1

sec.) for balancing stability and trackability. For every 0.1

sec. the likelihood was evaluated and state transition was

Microphone Array
and Camera Mounted
on Robot Head

Rotating

HumanLoudspeaker

1.5 m
60

o

Fig. 1. Experimental setup

executed. The number of particle was 500, and other pa-

rameters were σn = maxl(γl), w = 2. Here, α was tuned

for each data in order to obtain the best detection rate.

Figure2 shows a typical result for posterior probability

computation. For this data, the turntable was first rotated

counter-clockwise 30 degrees and then clockwise back to

the initial position. The rate of rotation was approximately

15 degrees per second. In the figure, (a) shows the proba-

bility of target existence, (b) shows the probability of sound

existence, and (c) shows the probability of human speech

event existence, respectively. The horizontal axis indicates

the time, and the vertical axis indicates the direction. Darker

colors indicate higher probabilities. You can see that human

speech events are clearly detected and tracked in (c) during

the interval when the camera can observe the targets. How-

ever, for example, in the interval from t = 13to22 the sound

from loudspeaker is also detected as human speech because

the loudspeaker is out of the camera’s view angle in the in-

terval and the system could not discriminate whether the

sound is from human or not.

Figure3 compared the marginal posterior probability of

human speech event existence from different models. In

the figure, (a) is ground truth, and (b), (c), and (d) show

the posterior probabilities computed using the 0/1-γ model,

the multiple-γ model, and the estimated-γ model, respec-

tively. The figure indicates that human speech intervals are

detected more stably in (c) and (d) than in (b).

Table1 summarizes the detection error rates for these
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Fig. 2. Posterior probabilities.
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Fig. 3. Probabilities of human speech event existence.

models.

E1 =
Number of undetected speech frames

Number of speech frames
,

E2 =
Number of misdetected non-speech frames

Number of non-speech frames
,

and the total error rate are calculated for the time interval

where both the human and the loudspeaker are in the cam-

era’s view area. E1 is the error for detecting human speech,

while E2 is the false alarm.

Although the total error rate was almost same for all

models, the E1 decreased to 15% and 13% for the proposed

models, while nearly 23% of speech frames were not de-

tected with the conventional model. The reason is that the

detection of speech segments with small power such as con-

Table 1. Error rates for human speech event detection

Error Rate E1 E2 Total

0/1-γ model 0.225 0.08 0.144

multiple-γ model 0.15 0.14 0.144

estimated-γ model 0.125 0.18 0.156

sonant portion was improved by the multiple-γ model or the

estimated-γ model. On the other hand, the false alarm was

increased for the proposed models. However, failure in de-

tecting speech segments is considered to be more serious in

our applications. Because once speech segments are not de-

tected and discarded at this stage, there would be no chance

of recovery at the later stage. In case of false alarm, to the

contrary, there would still be a chance of recovery.

5. DISCUSSION AND CONCLUSIONS

A method of tracking human speech events by the fusion

of audio and video information using a particle filter was

proposed and evaluated. Using the particle filter, several

sub-problems can be solved simultaneously and simply. We

extended the work of Checka et al.[4] for detecting only hu-

man speech events. The two elaborated statistical models

proposed herein for computing audio signal likelihood per-

formed better than the simpler model.

The proposed framework is easily extended to incorpo-

rate other information, such as lip movement detection and

human voice detection. In future studies, we intended to

enable more robust and accurate results and built the pro-

posed algorithm into various interactive systems, including

the humanoid robot.
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