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ABSTRACT

Efficient recognition of haptic data such as 3D motion
capture data and sign language sensory data can have wide
applications in the interactive computer animation and sign
language automatic translation areas. For this purpose, we
propose a similarity measure for multi-attribute haptic data,
a new form of multimedia signal. The proposed similarity
measure, based on singular value decomposition, captures
the most important features of the signal data, allows for
different signal generating rates and reasonable variations
in similar signals. Experiments with real life and synthetic
data demonstrate that the proposed similarity measure can
capture the similarities of motions with different speeds and
different lengths and can have up to 100% recognition rates.

1. INTRODUCTION

Haptic data taken from 3D motion capture and sign lan-
guage sensory devices such as CyberGlove are new forms
of multimedia signals. Efficient recognition of the haptic
data is important to motion analysis, human-computer in-
teractions, computer animation and sign language automatic
translation, and requires proper processing of the data. The
reason is that haptic data pose new challenges to similarity
search:

• The data are multi-attribute, and can have dozens or
hundreds of values at each time.

• The data are of variable lengths, and different local
rates cause corresponding portions to have different
lengths.

• Motions can follow similar paths in different direc-
tions, and data taken from repetitious motions can
hide the repetitions if not properly processed.

Due to these new challenges, Euclidean distance or dy-
namic time warping (DTW) distance is not suitable for mea-
suring the similarities of multi-attributedata, althoughDTW
distance has been widely used for speech recognition [5].
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A well-defined similarity measure should be able to cap-
ture the similarities of the haptic data regardless of different
data generation rates, large number of values generated each
time, or different motion directions or repetitions.

Proposed Approach: We propose to exploit the struc-
tural similarity of haptic data for the similarity measure of
multi-attribute data. As detailed in [4] and further explored
in Section 3.1 and Section 4.2, the geometric structure of
multi-attribute haptic data can be revealed by the singular
vector decomposition (SVD) of the data. We investigate the
main geometric structures of data matrices as exposed by
SVD, especially the left singular vectors (See Section 3.1)
in this paper. The left singular vectors are interpolated and
considered in the similarity measure by having the corre-
sponding DTW distances normalized. Experiments show
that 100% recognition rate can be achieved, and issues of
different lengths, different motion directions and repetitions
can be properly taken into consideration.

2. RELATED WORK

Multi-attributeAmerican Sign Language (ASL) motions are
considered in [8], and five-word sentences are segmented
at the word level and recognized by using Hidden Markov
Models (HMM) with 92-98% word accuracy. The number
of words in a sentence is required to be known beforehand,
so are the grammar constraints or forms of sentences.

Shahabi et al. [6] applied learning techniques such as
Decision Trees, Bayesian classifier and Neural Networks to
recognize static signs for a 10-sign vocabulary, and achieved
84.66% accuracy. In [7], a weighted-sum SVD is defined
for measuring the similarity of two multi-attribute motion
sequences. All right singular vectors are involved in the
similarity definition and left singular vectors of the sign data
are not used for the weighted-sum SVD measure.

SupportVector Machines (SVMs) are used in [3] to clas-
sify multi-attribute motion data and up to 100% accuracy
has been achieved to correctly classify and recognize dis-
crete signs.

In [4] a similarity measure is defined as the first step to
prune dissimilar sign data followed by directly comparing
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the normalized left singular vectors to further find the most
similar signs. This paper extends the similarity measure as
defined in [4] to make it work for motion data with different
directions or with repetitions.

3. BACKGROUND INFORMATION

In this section we discuss the SVD and DTW as background
information for the proposed similarity measure.

3.1. Singular Value Decomposition

As proved in [2], any real m × n matrix A has an SVD
A = WΣZT , where W = [w1, w2, . . . , wm] ∈ Rm×m and
Z = [z1, z2, . . . , zn] ∈ Rn×n are two orthogonal matrices,
and Σ is a diagonal matrix with diagonal entries being the
singular values of A: σ1 ≥ σ2 ≥ . . . ≥ σmin(m,n) ≥ 0.
Column vectors wi and zi are the ith left and right singular
vectors of A, respectively. For similar motions with differ-
ent lengths, their left singular vectors are of different sizes,
but their right singular vectors are of the equal length. The
singular values of matrix A are unique, and the singular vec-
tors corresponding to distinct singular values are uniquely
determined up to the sign, or a singular vector can have op-
posite signs.

The geometric structure of a matrix A is revealed by
its SVD. If the multi-dimensional row vectors or points in
A have different variations along different directions, the
SVD of matrix A gives the direction with the largest vari-
ation. Along the direction of the first right singular vector,
the row vectors in A have the largest variation, and along
the second right singular vector direction, the point varia-
tion is the second largest, and so on. The singular values
reflect the variations along the corresponding right singular
vectors. Fig. 1 illustrates the data in an 18 × 2 matrix with
its first and second right singular vectors v1 and v2. The 18
points in the matrix have different variations along different
directions, hence data have the largest variation along v1 as
shown in Fig. 1.
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Fig. 1. Geometric Structure of Matrix Exposed by its SVD

3.2. Dynamic Time Warping (DTW)

DTW is used to align two time series of length m and n re-
spectively. Let d(i, j) be the local distance between the two
sequences at i and j, and D(i, j) be the global accumulative
distance up to the sequence locations at i and j, respectively,
then

D(i, j) = min[D(i−1, j−1), D(i−1, j), D(i, j−1)]+d(i, j)

subject to D(1, 1) = d(1, 1). Some other constraints may
also be applied to restrict the warping window [1].

4. SIMILARITY MEASURE

In this section, we extend the similarity measure as defined
in [4] by further considering the left singular vectors for
their DTW distances.

4.1. No Left Singular Vectors Considered

The similarity in [4] is defined as follows.

Ψ(Q, P ) = |u1 · v1| × (�σ · �λ − η)/(1 − η) (1)

where u1 and v1 are the first right singular vectors of Q
and P , respectively, �σ = σ/|σ|, �λ = λ/|λ|, and σ and λ
are the vectors of the singular values of QT Q and P TP ,
respectively. Weight parameter η is to ensure that �σ and �λ
have similar contributions as u1 and v1 have to the similarity
measure and is determined by experiments. η can be set to
0.9 for the multi-attribute motion data.

This similarity measure captures the most important in-
formation revealed by the first right singular vectors and the
singular values, and can be applied to prune most of the ir-
relevant motions for similarity search, and inner products
of interpolated first left singular vectors are proposed as our
first attempt to consider motions with different directions
or with repetitions. Below, we extend the above similarity
measure by directly incorporating left singular vector infor-
mation in a new similarity measure definition.

4.2. Left Singular Vectors Considered

We will show why the above similarity needs to be extended
as a standalone measure and show how to extend it by ap-
plying dynamic time warping to left singular vectors.

The following theorem implies that motions following
the same paths in different directions will have the same
similarity as given by (1).

Theorem 1 Let A be any real m × n matrix, and A =
U1ΣV T . Exchange the order of any two rows of A and
let the resulting matrix be B, then B = U2ΣV T .
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Proof. Let C = AT A, then c(i, j) =
∑m

k=1 a(k, i)a(k, j),
and the order of rows in A makes no difference to C . Hence
BT B = C . It can be easily shown that C = V Σ2V T ,
hence Σ and V are independent of the order of rows in A.
It follows that B = U2ΣV T , which completes the proof of
the theorem.

Since c(i, j) =
∑m

k=1 a(k, i)a(k, j), repetition of A dou-
bles c(i, j). For any positive p we have pC = V (√pΣ)2V T .
Since singular values are normalized in (1), repetition of
A will have no effect on the similarity measure as defined
above, which will be considered further in this work.

Since AV = UΣ, hence σiui = Avi, indicating that
σ1u1 are the projections of row vectors in A onto v1, the di-
rection in which A has the largest variations. Av1 can also
be understood as the row vector component sums weighted
by the corresponding vector components of v1. So σ1u1 ac-
tually contains the motion path information in A, and differ-
ent directions or repetitions can be reflected in σ1u1. Sim-
ilar motions have similar v1 as shown in [4], and if they
have similar directions or repetitions, their projections onto
v1 should be similar, ie, the corresponding σ1u1 should be
close to each other. This makes it possible for us to con-
sider motion direction or motion repetitions by taking into
account only σ1u1, a uni-attribute sequence, rather than the
original multi-attribute matrix A.

σ1u1 can be computed by multiplyingA with v1, which
can be computed from SVD of C = AT A. Since different
motions can have different durations and their lengths can
be hundreds or thousands, direct comparison of σ1u1 can
be computationally costly. We propose to uniformly inter-
polate the computed σ1u1, and compare the resulting equal
length interpolated σ1u1.

AV = UΣ indicates that as long as v1 and u1 have
consistent signs, their signs are not unique as illustrated in
Fig. 2. Motions (a) and (b) are similar, yet signs of their first
left singular vectors can be opposite. Without loss of gen-
erosity, we let the mean of v1 components be positive, and
negate σ1u1 if necessary as shown in Fig. 2. Let ū1 = σ1u1

after negation if necessary. Shifts or dis-alignment of ū1 for
similar motions as shown in Fig. 2 justify the use of DTW
for measuring the closeness of ū1 for different motions.

As Fig. 3 and Fig. 4 show, the DTW distances of ū1

for similar motions are usually much smaller than those of
dissimilar motions. To take the DTW distance into account
in the similarity measure, we normalize the DTW distance
as follows.

• Find a maximum DTW distance of ū1 for similar mo-
tions, let it be D̄.

• Convert DTW distance D intoD = (D̄−D)/D̄. Let
D = 0 if D̄ < D.

It can be easily verified that 0 ≤ D ≤ 1. We then define
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Fig. 2. Interpolated First Left Singular vectors Multiplied
by First Singular Values for Similar Motions

our new similarity measure as follows.

Ψ(Q, P ) = |u1 · v1| × (�σ · �λ − η)/(1 − η) ×D (2)

where u1, v1 are the first right singular vectors of motion Q
and P , respectively, �σ and �λ are the corresponding normal-
ized singular value vectors, η is a weight parameter and D
is defined as above.
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Fig. 3. DTW Distances of ū1 for Dissimilar Motions
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Fig. 4. DTW Distances of ū1 for Similar Motions
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5. PERFORMANCE EVALUATION

In this section we evaluate the performance of similarity
(2) on data of one degree of freedom (DOF) and of three
DOFs taken respectively from CyberGlove and Virtual Re-
ality Model Language (VRML) models.

We generated 300 motions using CyberGlove, a fully
instrumented glove with 22 sensors that provides 22 high-
accuracy joint-angle measurements representing the angles
of the physical hand joints at different parts of a hand. Each
of the 100 different motions has other two similar ones, one
more accurate, and one less accurate. Motions can have
different durations and lengths, and motion velocities are
different at different time for even similar motions.

Similarities between similar motions are computed for
the 100 motions, and similarity between each motion and
other 99 dissimilar motions are also computed. Fig. 5 shows
the similarities of more accurate motions and the highest
similarities between each motion and the other 99 different
motions. For more accurate motions, similarities between
similar motions are higher than those between the same mo-
tion and all other dissimilar motion, achieving 100% recog-
nition rate for the 100 different motions. For the less accu-
rate motions, 92% similar motions have higher similarities
than dissimilar motions.
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Fig. 5. Motion Similarities

In addition to the one DOF data from CyberGlove, three
DOFs data from VRML model NANCY and JAKE have
also been generated. These two models have different ge-
ometries, and can represent people with different body sizes
and proportions. Fourteen common joints such as shoul-
ders, elbows, wrists, knees, and ankles are chosen as each
model’s sampling points. For each model, 4 basic motions
are generated: STRETCH, KICK, WALK, and RUN. KICK
and STRETCH involve the motions of arms and legs of the
models in different directions. One similar motion is ex-
tracted from each of the 4 basic motions for each model by
removing alternative rows for different portions of the 4 ba-
sic motions, and then repeated for the whole duration, and
another set is obtained by reversing the motion directions
of the basic motions. Then 4 basic motions and 8 extracted

motions of one model are computed for similarities with dif-
ferent motions of the other model. Experiments show that
100% recognition rate can be achieved for the VRML model
data.

It’s worth noting that high recognition rates have been
achieved despite the following challenges:

• Multi-attribute data have 22 attributes for one DOF
CyberGlove data, and 42 attributes for three DOF VRML
data.

• Data matrices have different lengths and motions have
different local rates.

• Motions can have different directions and repetitions.

6. CONCLUSION

We have proposed a new similarity measure based on SVD
of multi-attributemotion data, a new medium for signal pro-
cessing. The first left singular vectors should be similar for
similar motions. They are interpolated, and DTW is applied
to the interpolated equal length left singular vectors for mea-
suring the closeness of the left singular vectors. The com-
puted DTW distances are normalized so as to be incorpo-
rated into an existing similarity measure as proposed in [4].
Experiments from one DOF and three DOF data show that
for well controlled accurate similar motions, 100% recog-
nition rate can be achieved, and for less accurate motions,
92% recognition rate can be achieved. The proposed sim-
ilarity measure can address the motion direction and rep-
etition issues of multi-attribute data with high recognition
rates as our motion datasets have demonstrated.
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