
COMPLEXITY METRIC DRIVEN ENERGY OPTIMIZATION FRAMEWORK FOR

IMPLEMENTING MPEG-21 SCALABLE VIDEO DECODERS

Gouri Landge, Mihaela van der Schaar and Venkatesh Akella

Department of Electrical and Computer Engineering

University of California, Davis, CA-95616

ABSTRACT

We propose a systematic framework to optimize the energy

consumption of wavelet-based scalable video decoders using

generic computational complexity metrics derived from the

frequency of execution of program basic blocks [1]. The

complexity metrics are independent of the hardware

architecture/resources of the decoders and capture both the time

varying video content characteristics and the corresponding

encoding parameters. We show how the generic complexity

metrics can be translated into a platform-specific metric such as

the execution time, which in turn can guide the selection of

optimal voltage and frequency selection to optimize the energy.

Preliminary results show 67% to 83% improvements in energy

consumption on key functions of the 3D Wavelet based Scalable

Codec (SVC), which is a likely candidate for the emerging

MPEG-21 video standard [2]. Most of the processing in the

proposed framework is done off-line, and hence it has limited

impact in terms of delay or additional resource requirements for

the decoder.

1. INTRODUCTION

Energy optimization of multimedia applications especially on

battery operated devices such as laptops and PDAs is extremely

important. Growing demand for higher data rates and enhanced

functionality that results in more complex algorithms

exacerbates this problem even further. In recent years, many

techniques have been proposed to optimize the energy of

multimedia applications on programmable processors

[4][5][6][7]. In [4], a technique to dynamically adjust the

pipeline depth of a processor is described to save power in

response to varying computational workload. In [5], a method

for energy optimization using runtime profiling of the input bit-

stream and per frame frequency-voltage scaling is described. In

[6], dynamic voltage scaling by monitoring the input data rate

using FIFOs is proposed and in [7], an overview of techniques

for dynamically tuning processor resources is presented.

However, existing approaches suffer from two drawbacks. First,

they are ad-hoc, i.e. they are created for a specific algorithm or

implementation on a particular platform. There is currently no

general framework to drive energy optimization that can be

universally used across different video standards and various

hardware/software implementations. The second drawback of

existing work such as [4][6][7] is that they rely on on-line

metrics, i.e. the decoder learns the data characteristics and drives

the power optimization framework. The problem with on-line

models is that they are based on small time-scales and hence,

they have limited knowledge of long term variations in

computational behavior and resource requirements. This results

in modest benefits and unnecessary computational overhead at

the decoder, to construct the metrics. Furthermore, these

approaches cannot take advantage of specific decoding

algorithm, making the metrics less accurate. As a consequence,

the benefits of these metrics are limited. Existing approaches to

video complexity metrics such as counting the number of basic

operations such as adds, subtracts etc. (see for example [3]) are

inadequate, because it is not possible to estimate the execution

time accurately on a particular platform from these metrics. The

actual execution time depends on the instruction set, micro-

architecture details such as techniques to exploit instruction-level

parallelism, pipeline depth, memory structure and bandwidth and

the compiler optimization such as software pipelining and loop-

unrolling etc.

We propose a new framework that is based on off-line

metrics constructed by the encoder explicitly exploiting the

knowledge of the algorithm. Given that the metrics are

constructed off-line they can be complex and accurate and

useful. Also, the proposed framework is general i.e. it is

independent of the particular deployed video standard or the

implementation platform. We achieve this by constructing

generic complexity metrics (GCM) at the encoder that are based

on an abstract representation of a generic decoder and translating

these metrics into real complexity metrics (RCM) at the specific

receiver. Using this framework, which decouples the GCM

computation from the actual RCM, we obtain significant savings

in energy of up to 83% on the investigated functions.

The paper is organized as follows. The methodology to

create and transmit GCM is described in Section 2. Section 3

illustrates the methodology for estimating the GCMs using an

example. The mechanism for translating GCM to RCM and

frequency-voltage scaling to achieve energy savings is described

in Section 4. Results are described in Section 5 and conclusions

and future work is discussed in Section 6.

2. GENERIC COMPUTATIONAL COMPLEXITY

METRICS FOR VIDEO BIT STREAMS

The computational complexity metric should satisfy the

following requirements:

• The receiver (decoder) should be able to quickly and

accurately estimate the execution time (RCM) of a given

function based on the GCM.

• The metric should be generic to be able to satisfy a broad

range of decoders with even broader range of

implementations. Obviously, it is not practical to generate a

metric for each possible receiver.

II - 11410-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

• The overhead in terms of generation and distribution of the

meta-data representing the GCM and the interpretation of

the GCM to RCM at the receiver should be minimal in

terms of memory requirements, time and power.

We exploit two characteristics of video processing to meet

the challenges listed above. First, the decoder processes data that

has been generated by the encoder. Hence the encoder has a

priori knowledge of the sequence of functions processed by any

decoder. Second, the computational kernel of most video

processing algorithms such as interpolation, wavelet transform

lifting steps, bit plane coding/decoding etc. is a loop. The

execution time of a loop-based program can be estimated

(accurately) by determining the number of iterations each loop

has to perform, given the execution time for one iteration of the

loop. This is formalized using the notion of a basic block (BB)

[1]. A BB is a section of code that is executed from start to finish

with one entry and one exit. A program loop can be modeled as a

BB corresponding to the body of the loop. The BB execution

time is deterministic and known at compile time because video

processing is a real-time application, which means the loops

cannot have any non-deterministic operations like interrupts or

input/output operations within the loop body. The total execution

time of a program to process a given sequence of data can be

obtained by knowing the clock frequency of the underlying

processor and the number of iterations of each BB. As a result,

the abstract machine for our complexity metrics is a loop

execution engine, capable of executing a particular sequence of

BBs: BB1, BB2… BBn. This sequence will be called the basic

block signature of a given encoder, which given the

complementary relationship between the encoder and decoder is

recognized by any decoder. The basic block signature consists

of a subset of the total number of BBs in a program that satisfy

some criteria. In this paper, we choose the basic blocks that

contribute at least 1 % of the overall run-time.

We define GCM as a set of number of iterations of the BBs in

the Basic Block Signature for distinct Adaptation Units (AU) in

the next group of frames (GOF), i.e.

GCM =
{ }

KjQi

j

iGC
..1,..1 == where Q is the total number of

significant BBs, i is the BB id, K is the total number of AUs in a

GOF and j is the AU id. The GCM is transmitted as meta-data

along with the video stream.

3. GENERIC COMPLEXITY METRICS

COMPUTATION

In this section, we will illustrate how GCMs can be determined

by considering a state-of-the-art wavelet video codec, based on

the 3D ESCOT [9] implementation. The block diagram of such a

coder is depicted in Figure 1. (For more information on SVC

codecs and specific 3D ESCOT implementation, the interested

reader is referred to [8][9][2]). In this SVC implementation, a

number of temporal subbands are jointly entropy coded. We

refer to this group of frames as a Frame Block.

For our illustration, we determine the GCM for the BB

corresponding to the significance map sub-function (see DE_ZC

in [9]) of the Entropy Decoding module. This function was

selected because it represents a significant percentage (e.g. for

certain sequences up to 60% [8] [11]) of the total computational

complexity at medium and high bit rates.

Video

Frames

Temporal

Wavelet

Decomposition

Motion

Estimation

2D Spatial

Wavelet

Decomposition

MV&Mode

Coding

Entropy

Coding

...

...

...

Figure 1. Block Diagram of MCTF Based Wavelet Video

Encoder.

The GCM is determined by the distribution of the significant

(non-zero) symbols at the various bitplane levels. The

distribution of significant symbols across each bit plane bp for a

spatio-temporal band at temporal level n and spatial level m is

denoted as
, ()n m
sD bp . At encoding time,

, ()n m
sD bp is

computed for the maximum number of bitplanes. However, at

the decoder side, only a subset of the precomputed
, ()n m
sD bp

values is used corresponding to the transmitted (decoded)

bitplanes
,n mBP . The GCM for the DE_ZC sub-function can be

then determined as:
. ,

, , , ,
_

1 1 1 1

[(())*]

n m fbBPN M FB
n m fb m n m fb

DE ZC s

n m fb bp

GCM BP L D bp P

= = = =

= � ���� � ,

where

• N = total number of Temporal Levels,

• M = total number of Spatial Levels,

• FB = the number of Frame Blocks at n
th
temporal level in

the temporal decomposition tree,

•
, ,n m fbBP = the decoded bitplanes at n

th
temporal level and

m
th
spatial band for a frame block fb,

• L
m
= the band size at m

th
spatial level,

•
, , ()n m fb
sD bp = the distribution of significant symbols at nt

h

temporal level and m
th
spatial band for a frame block fb,

• P = Frame Block Size.

In the previous equation, to derive the number of zero symbols,

we subtract

. ,

, ,

1

()

n m fbBP

n m fb
s

bp

D bp

=

� that quantifies the number of

significant symbols from the term , ,n m fb mBP L� representing the

maximum number of symbols that can be processed.

The overhead to compute
, , ()n m fb
sD bp for every spatio-temporal

band is negligible as compared to the total encoding complexity.

Moreover, the similarity between consecutive temporal bands at

the same temporal level can be exploited to further reduce the

overhead significantly. For instance, only one band at each

temporal level is used for estimating the GCM. We can further

reduce the overhead for the GCM computation by considering

only the lowest (most significant) temporal bands in the

estimation process. In this way, tradeoffs can be made between

the accuracy of the GCM estimation and the computation

overhead. Note that the accuracy decrease is mainly visible at

high bit rates, since at lower rates the highest temporal bands

exhibit only few significant symbols.

II - 1142

➡ ➡

Figure 2 shows the actual and estimated GCM of the DE_ZC

function for different complexity estimations, i.e. based on a

different number of temporal bands. Model 1 is computed by

selecting one band at each temporal level. Model 2 is determined

using only two most important temporal bands (i.e. lowest

temporal level). Model 3 is computed based solely on the total

number of transmitted bitplanes
, ,n m fbBP . This last model gives

an upper bound of the complexity associated with this BB. Here,

due to space limitations, only the results for two sequences are

presented. Our extensive study has shown similar results for

other sequences. The data clearly shows that even for low

complexity estimations, only a small error margin to the actual

GCM is observed.

Figure 2 : GCM Estimation with Varying Accuracy

4. METHODOLOGY
Our framework consists of the following steps. Some of them are

performed at the encoder and some of them are performed at the

decoder.

Figure 3 – Basic Block Signature and Generic

Complexity Mapping

At the Encoder:

STEP 1:

Compute the GCMs using the techniques described in Section 2

and Section 3. This involves creating a structure shown in Figure

3. The encoder assumes that a generic decoder will consists of a

set of functions each of which may have a set of basic blocks.

The BB signature is a sequence of significant basic blocks

chosen by a particular criteria such as those that contribute at

least 1% to the computation. This is done once when the new

encoder is deployed.

STEP 2:

Each BB is associated with GCi that denotes the number of

iterations that the BB is supposed to make. This is derived from

the complexity metric (shown in Section 3) and it is computed

once for every adaptation unit.

STEP 3:

The GCM values are transmitted as meta-data together with the

corresponding bitstream.

At the Decoder:

In the case of energy adaptation, the RCM is the actual decoding

time for a video bit stream on a specific hardware/software

platform. The GCM generated by the encoder has to be

translated into an RCM at the decoder.

STEP 1

Create a table called BBET (basic block execution time) with the

BB starting instruction address A and the execution time per

invocation of the BB in terms of the number of processor clock

cycles T for all the BBs in the basic block signature of the

encoder. T is known at compile time as most modern compilers

perform basic block analysis for code optimization and

instruction scheduling. It can also be obtained by profiling using

tools such as Vtune from Intel for x86-based platforms. T

incorporates platform-specific (and implementation-specific)

details such as the hardware/software partitioning, special

resources such as zero-overhead loops, co-processors and

optimizations such as loop unrolling or software pipelining.

STEP 2

Using the received GCM meta-data,

FOR each BBi : i from 1 to Q

FOR each adaptation unit j: 1 to K

(a) Look up BBET to get the corresponding basic

block address and basic block execution

time. ()ii TA ,

(b) Number of iteration for the next set of frame blocks

={ }jiGC

(c) The RCM in terms of number of clock cycles for a

frame block j, for the basic block i, will then be given

by
i

j

i

j

i TGCRC *=

STEP 3- Voltage and Frequency Reconfiguration

Using the RCM, the optimal voltage and frequency of operation

of the processor for a given set of frames is computed as follows:

FOR each adaptation unit j: 1 to K

(i) Clock Frequency for Frame Block j :

()KTRCF total

j

ij //=

(ii) Voltage for Frame Block j :

() maxmax /* FVFV jj =

(iii) if ()floorj VV < � floorj VV =

where
floorV is the minimum operating voltage,

maxV is the

maximum operating voltage,
maxF is the maximum operating

frequency of the processor,
confT is frequency reconfiguration

overhead (the time required for the phase-locked loops to

stabilize, during this time the processor is usually stalled or idle),

the total decoding time available is totalT .

STEP 1 is executed once during the installation of the decoder.

STEP 2 is executed once for each adaptation unit in the worst-

II - 1143

➡ ➡

case. STEP 3 is also executed once for each adaptation unit in

the worst case. In the next section we will quantify the energy

savings and the overhead for a set of typical video sequences.

5. RESULTS
The amount of energy saved by reducing the voltage and

frequency dynamically based on our framework is calculated as

shown below. We make the following assumptions. The Frame

Block of four frames is considered as the Adaptation Unit (AU).

This is because in the referred implementation of the codec,

entropy coding is done across a block of four frames and because

of the high correlation among the neighboring frames

computational complexity for each of the 4 frames in a block is

very similar. We further assume that, the time spent in de_zc

sub-function for a block of four frames is 32 ms, the maximum

frequency of operation is maxF = 2.6 GHz, The maximum

voltage at which the processor operates is maxV
= 3.3 V,

Voltage floor is 1.0 V and the frequency reconfiguration

overhead is 30 us based on Intel Speed Step technology [10]

Maximum energy spent without voltage frequency scaling:

totaleff TFVCE **)(* max

2

maxmax =
Note here that, although less time would be actually spent in the

de_zc sub-function, the processor is still operated at

maxV
and maxF

, hence no energy savings could be achieved.

Energy spent with optimal voltage/frequency scaling:

)***(2
2

1

iiieff

i

opt TFVCE

N

�
=

=

Worst case energy overhead for voltage/frequency scaling:

JsFVCE N

effovrhd)30*2***(max

2

max µ=

Energy Savings =

)%100*)/)]((([maxmax EEEE ovrhdopt +�

Table 1 lists the energy savings obtained for various sequences

with different characteristics of motion and texture. We find that

the savings in energy range from 67% to 83% for the DE_ZC

subfunction.

Table 1 Energy Savings for DE_ZC sub-function

Sequence Description Energy Savings (%)

Akiyo Frames 1-64 67.41

Foreman Frames 1-64 82.80

Foreman Frames 236-300 77.24

Mother Frames 1-64 80.13

Table 2 shows the overhead related to the complexity driven

frequency scaling mechanism, for a GOF of 64 frames of a QCIF

sequence encoded using 4 temporal decomposition levels, 3

spatial decomposition levels and 10 bit precision for the

coefficient values (
, ,n m fbBP). It can be clearly seen that this

mechanism introduces very insignificant overhead in terms of

computation power as well as memory requirements.

Table 2 – Overhead of the framework

Overhead Type Overhead Values

GCM Computation at

Encoder

~1.521 M cycles

Memory for GCM

Transmission as meta data.

864 bits

Runtime for Steps 1, 2 & 3

at decoder

~500 cycles

6. CONCLUSIONS & FUTURE WORK

We introduce a framework for complexity metric driven energy

optimization for MPEG-21 scalable video decoders on a general-

purpose processor capable of adjusting the frequency and

voltage dynamically. Even though we focused on energy

optimization in this paper, the framework can also be used for

other dynamic (run-time) optimization of processor resources

such as allocation of critical resources such as buffers, data

caches and optimal hardware/software partitioning. Also, the

framework is not restricted to wavelet-based codecs. It can be

used for other video standards as well. Future work will consist

of refining the metrics for greater accuracy and automating some

of the steps such as BBET construction and optimal selection of

the basic blocks in the basic block signature.

7. REFERENCES
[1] Alfred Aho, Ravi Sethi and Jeffrey, Ullman, “COMPILERS:

Principles, Techniques and Tools”, Addison-Wesley, 1986.

(Chapter 9, page 528)

[2] J.R. Ohm, M. van der Schaar, J. Woods, “Inter-frame wavelet

coding – Motion Picture Representation for Universal Scalability”,

Image Communications, Special issue on Digital Cinema, to appear

June 2004.

[3] M. Horowitz, A. Joch, F. Kossentini, A. Hallapuro, “H.264/AVC

Baseline Profile Decoder Complexity Analysis”, IEEE Trans.

Circuits and Systems for Video Tech., vol. 13, No. 7, July 2003

[4] S. Kim, C. H. Ziesler, M.C. Papaefthymiou, “Fine-grain real-time

reconfigurable pipeline”, IBM J. RES. & DEV. Vol. 47, No. 5/6

Sept/Nov 2003

[5] Daniel G Sachs, Sarita V Adve, Douglas L Jones, “Cross-layer

Adaptive Video Coding To Reduce Energy on General Purpose

Processors”, ICIP 2003, pages 25-28

[6] Gutnik, V.; Chandrakasan, A.P. “Embedded power supply for low-

power DSP” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, Vol: 5 , Issue: 4 , Dec. 1997 Pages:425 - 435

[7] Albonesi, D. H,, Balasubormonian, R. et. al “ Dynamically Tuning

Processor Resources with Adaptive Processing”, IEEE Computer,

December 2003, pages 49-58

[8] J. Xu, R. Xiong, B. Feng, G. Sullivan, M. Lee, F. Wu, S. Li, “3D

Sub-band Video Coding using Barbell Lifting”, ISO/IEC

JTC1/SC29/WG11, MPEG2004/M10569/S05, March 2004

[9] J. Xu, S. Li, Y. Zhang, Z. Xiong, “A Wavelet Video Coder Using

Three Dimensional Embedded Sub-band Coding With Optimized

Truncation (3-D ESCOT)”

http://research.microsoft.com/china/papers/Wavelet_Codec_Using_

3D_ESCOT.pdf

[10] Gochman, Ronen et. al “Intel Pentium M Processor:

Microarchitecture and Performance, Intel Technology Journal, Vol

7, Issue 2, May 2003

[11] Gouri Landge, Mihaela van der Schaar, Venkatesh Akella,

“Complexity Analysis of Scalable Motion-Compensated Wavelet

Video Decoders”, SPIE August 2004,Vol 5558-143

II - 1144

➡ ➠

