
A HIGH-PERFORMANCE HARDWARE IMPLEMENTATION OF THE H.264

SIMPLIFIED 8X8 TRANSFORMATION AND QUANTIZATION

Ihab Amer, Wael Badawy, and Graham Jullien

Advanced Technology Information Processing Systems (ATIPS)

Calgary, Alberta, Canada, T2N 1N4

{amer, badawy, jullien}@atips.ca

ABSTRACT

The recently approved digital video standard known as

H.264 promises to be an excellent video format for use

with a large range of applications. Real-time

encoding/decoding is a main requirement for adoption of

the standard to take place in the consumer marketplace.

Transformation and quantization in H.264 are relatively

less complex than their correspondences in other video

standards. Nevertheless, for real-time operation, a speedup

is required for such processes. Especially after the recent

proposal to use an 8x8 integer approximation of Discrete

Cosine Transform (DCT) to give significant compression

performance at Standard Definition (SD) and High

Definition (HD) resolutions. This paper discusses a high-

performance hardware implementation of the H.264

simplified 8x8 transformation and quantization. The

results show that the architecture satisfies the real-time

constraints required by different digital video applications.

1. INTRODUCTION

Due to the remarkable progress in the development of

products and services offering full-motion digital video,

digital video coding currently has a significant economic

impact on the computer, telecommunications, and imaging

industry [1]. This raises the need for an industry standard

for compressed video representation with extremely

increased coding efficiency and enhanced robustness to

network environments [2].

Since the early phases of the technology, international

video coding standards have been the engines behind the

commercial success of digital video compression. ITU-T

H.264/MPEG-4 (Part 10) Advanced Video Coding

(commonly referred as H.264/AVC) is the newest entry in

the series of international video coding standards. It was

developed by the Joint Video Team (JVT), which was

formed to represent the cooperation between the ITU-T

Video Coding Experts Group (VCEG) and the ISO/IEC

Moving Picture Experts Group (MPEG) [3]-[5].

Compared to the currently existing standards, H.264

has many new features that makes it the most powerful

and state-of-the-art standard [5]. Network friendliness and

good video quality at high and low bit rates are two

important features that distinguish H.264 from other

standards [6]-[10].

Unlike current standards, the usual floating-point 8x8

DCT is not the basic transformation in H.264. Instead, a

new transformation hierarchy is introduced that can be

computed exactly in integer arithmetic. This eliminates

any mismatch issues between the encoder and the decoder

in the inverse transform [7], [11]. In the initial H.264

standard, which was completed in May 2003, the

transformation is primarily 4x4 in shape, which helps

reduce blocking and ringing artifacts.

In July 2004, a new amendment called the Fidelity

Range Extensions (FRExt, Amendment I) was added to

the H.264 standard. This amendment is currently receiving

wide attention in the industry. It actually demonstrates

further coding efficiency against current video coding

standards, potentially by as much as 3:1 for some key

applications. The FRExt project produced a suite of some

new profiles collectively called High profiles. Beside

supporting all features of the prior Main profile, all the

High profiles support an adaptive transform-block size

and perceptual quantization scaling matrices [5]. In fact,

the concept of adaptive transform-block size has proven to

be an efficient coding tool within H.264 video coding

layer design [12]. This led to the proposal of a seamless

integration of a new 8x8 integer approximation of DCT

(and prediction modes) into the specification with the least

possible amount of technical and syntactical changes [13]-

[15].

So far, most of the work in H.264 is software

oriented. However, a hardware implementation is

desirable for consumer products to provide compactness,

low power, robustness, cheap cost, and most importantly,

real-time operation. In our previous work [16]-[26], we

proposed hardware implementations for various blocks in

the initial H.264 transformation hierarchy model and

entropy coding. In this paper, we propose a high-

performance hardware implementation of the H.264

newly-proposed simplified 8x8 transform and

quantization.

II - 11370-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

The rest of this paper is organized as follows: Section

2 overviews the H.264 simplified 8x8 transform and

quantization. In section 3, a description of the proposed

hardware prototype is introduced. Section 4 presents the

simulations and results achieved. Finally, section 5

concludes the paper.

2. H.264 SIMPLIFIED 8X8 TRANSFORM AND

QUANTIZATION

An integer approximation of 8x8 DCT was proposed in

FRExt to be added to the JVT specification based on the

fact that at SD resolutions and above, the use of block

sizes smaller than 8x8 is limited [15]. This transform is

applied to each block in the luminance component of the

input video stream. It allows for bit-exact implementation

for all encoders and decoders. In spite of being more

complex compared to the 4x4 DCT-like transform that is

adopted by the initial H.264 specification, the proposed

transform gives excellent compression performance when

used for high-resolution video streams using a number of

operations comparable to the number of operations

required for the corresponding four 4x4 blocks using the

fast butterfly implementation of the existing 4x4 transform

[13], [14].

The 2-D forward 8x8 transform is computed in a

separable way as a 1-D horizontal (row) transform

followed by a 1-D vertical (column) transform as shown

in Equation (1).

T

f f
W C XC (1)

where the Matrix
f

C is given by Equation (2).

8 8 8 8 8 8 8 8

12 10 6 3 3 6 10 12

8 4 4 8 8 4 4 8

10 3 12 6 6 12 3 10
.1 / 8

8 8 8 8 8 8 8 8

6 12 3 10 10 3 12 6

4 8 8 4 4 8 8 4

3 6 10 12 12 10 6 3

fC (2)

Each of the 1-D transforms is computed using 3-

stages fast butterfly operations as follows [14]:

Stage 1:
a[0] = x[0] + x[7];

a[1] = x[1] + x[6];

a[2] = x[2] + x[5];

a[3] = x[3] + x[4];

a[5] = x[0] - x[7];

a[6] = x[1] - x[6];

a[7] = x[2] - x[5];

a[8] = x[3] - x[4];

Stage 2:
b[0] = a[0] + a[3];

b[1] = a[1] + a[2];

b[2] = a[0] - a[3];

b[3] = a[1] - a[2];

b[4] = a[5] + a[6] + ((a[4]>>1) + a[4]);

b[5] = a[4] – a[7] – ((a[6]>>1) + a[6]);

b[6] = a[4] + a[7] – ((a[5]>>1) + a[5]);

b[7] = a[5] – a[6] + ((a[7]>>1) + a[7]);

Stage 3:
w[0] = b[0] + b[1];

w[1] = b[2] + (b[3]>>1);

w[2] = b[0] - b[1];

w[3] = (b[2]>>1) - b[3];

w[4] = b[4] + (b[7]>>2);

w[5] = b[5] + (b[6]>>2);

w[6] = b[6] – (b[5]>>2);

w[7] = -b[7] + (b[4]>>2);

Hence, the 2-D transform operation can be

implemented using signed additions and right-shifts only,

avoiding expensive multiplications. The post-scaling and

quantization formulas are shown in Equations (3)-(5).

 15 (6)qbits QP DIV (3)

(. , 1)
ij ij

Z SHR W MF f qbits (4)

 () ()
ij ij

Sign Z Sign W (5)

where QP is a quantization parameter that enables the

encoder to accurately and flexibly control the trade-off

between bit rate and quality. It can take any integer value

from 0 up to 51. Zij is an element in the quantized

transform coefficients matrix. MF is a multiplication

factor that depends on (m = QP mod 6) and the position (i,
j) of the element in the matrix as shown in Table 1. SHR()

is a procedure that right-shifts the result of its first

argument a number of bits equal to its second argument. f
is defined in the reference model software as 2qbits/3 for

Intra blocks and 2qbits/6 for Inter blocks [3], [4].

Table 1. Multiplication Factor (MF)
m (i, j)

 G0

(i, j)

 G1

(i, j)

 G2

(i, j)

 G3

(i, j)

 G4

(i, j)

 G5

0 13107 11428 20972 12222 16777 15481

1 11916 10826 19174 11058 14980 14290

2 10082 8943 15978 9675 12710 11985

3 9362 8228 14913 8931 11984 11295

4 8192 7346 13159 7740 10486 9777

5 7282 6428 11570 6830 9118 8640

*G0: i = [0, 4], j = [0, 4]

 G1: i = [1, 3, 5, 7], j = [1, 3, 5, 7]

 G2: i = [2, 6], j = [2, 6]

 G3: (i = [0, 4], j = [1, 3, 5, 7]) (i = [1, 3, 5, 7], j = [0, 4])

 G4: (i = [0, 4], j = [2, 6]) (i = [2, 6], j = [0, 4])

 G5: (i = [2, 6], j = [1, 3, 5, 7]) (i = [1, 3, 5, 7], j = [2, 6])

II - 1138

➡ ➡

3. HARDWARE PROTOTYPE

A block diagram of the proposed architecture is shown in

Figure 1. The architecture uses 8x8 parallel blocks, QP, a

synchronizing clock, and an enabling signal (Input Valid)

as inputs. It outputs the quantized transform coefficients

and the signal Output Valid. A block diagram of the

architecture is shown in Figure 1.

Figure 1. A block diagram of the proposed hardware

architecture

The architecture is designed to perform pipelined

operations, which drastically reduces the required memory

resources and accesses, avoids any stall states, and

dramatically improves the throughput of the architecture.

Figure 2 gives a detailed block diagram of the proposed

architecture showing the flow of signals between the main

stages of the design.

Figure 2. A detailed block diagram of the proposed

hardware architecture

The architecture is composed of two main stages. The

first one contains two blocks; the Transform block, which

is composed of the three stages of the fast butterfly

operations mentioned in Section 2, and the QP-Processing

block, which is responsible for calculating the

intermediate variables needed for quantization, such as f,

qbits, and (P0 – P5), which are the values of the

multiplication factors at the six different groups of

positions in the matrix as shown in Table 1. Finally, the

Quantization process takes place in the second main stage

of the design. This is done by performing the addition and

multiplication operations in the Arithmetic block, and

finally the shifting operations in the Shifter block.

4. SIMULATIONS AND RESULTS

The architecture of the H.264 simplified 8x8

transformation is prototyped using VHDL language. It is

simulated using the Mentor Graphics© ModelSim 5.4®

simulation tool, and synthesized using Synplify Pro 7.1®

from Synplicity©. The target technology is the FPGA

device XC2V4000 (BF957 package) from the Virtex-II

family of Xilinx©.

Table 2 summarizes the performance of the

prototyped architecture.

Table 2. Performance of the prototyped architecture

Critical

Path (ns)

CLK Freq.

(MHz)

of i/p

Buffers

of o/p

Buffers

14.598 68.5 583 1217
of I/O

Reg. Bits

#of Reg. Bits

not inc. (I/O)

Total # of

LUT

of clock

buffers

1219 16893 29018 1

A 14.598 ns critical path is estimated by the synthesis

tool. Since at steady state, the architecture outputs a whole

8x8 encoded block with each clock pulse, therefore the

time required to encode a whole SD frame of 704 480

pixels can be calculated as follows:

Time required per CIF frame =

Time required per block Number of

blocks per frame

 = 14.598 ns
Numberof pixels per frame

Numberof pixels perblock

 = 14.598 ns
(704 480)

(8 8)

pixels per frame

pixels perblock

 77.1 s

This value is about 216 times less than the 16.67 ms
time required for continuous motion (assuming a refresh

rate of 60 frames/sec). Similarly, it can be shown that the

time required to encode a whole High Definition

Input Valid

CLK

8x8

Forward

Trans. &

Quant.

Input Block

(X00-X77)

QP

Quant.

Trans.

Coefficients

Output Valid

 Output Valid

Input Valid

CLK

Quantization

Quant. Enable

QP-Processing
QP

A
ri

th
m

et
ic

S
h

if
te

r

 (Z00-

Z77)

P0-

P5

f

qbits

 (X00-

X77)

Transform

S
ta

g
e

3

S
ta

g
e

2

S
ta

g
e

1

(W00-

W77)

II - 1139

➡ ➡

Television (HDTV) frame of a 720 1280 pixels

resolution, and a 60 frames/sec frame rate is 0.21 ms,

which is about 79 times less than the 16.6 ms time

required for continuous motion. Hence, the introduced

architecture satisfies the real-time constraints for SD, HD,

and even higher resolution video formats.

5. CONCLUSION

A high-performance architecture for prototyping the

simplified 8x8 transformation and quantization, which

was recently adopted by the H.264 standard is developed.

The architecture is designed to perform pipelined

operations, which drastically reduces the required memory

resources and accesses, avoids any stall states, and

dramatically improves the throughput of the architecture.

It satisfies the real-time constraints required by different

high-resolution digital video applications. The system is

simulated using ModelSim 5.4®, and synthesized using

Synplify Pro 7.1®, targeting the FPGA device XC2V4000

(BF957 package) from the Virtex-II family of Xilinx©.

The ideal way to utilize the proposed design is to embed it

to an overall system, where the reference software runs on

a Digital Signal Processor (DSP), and the computationally

extensive operations performed in the hardware block.

6. ACKNOWLEDGEMENT

The authors would like to thank Advanced Technology

Information Processing Systems (ATIPS), Alberta

Ingenuity Fund (AIF), Natural Science and Engineering

Research Council of Canada (NSERC), Canadian

Microelectronics Corporation (CMC), Micronet R&D,

Alberta Informatics Circle of Research Excellence

(iCORE), Canada Foundation for Innovation (CFI), and

the Department of Electrical and Computer Engineering at

the University of Calgary for supporting this research.

7. REFERENCES

[1] A. M. Tekalp, Digital Video Processing, Prentice-Hall, Inc., New

Jersey, USA, 1995.

[2] “ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC,” Draft Text of Final

Draft International Standard for Advanced Video Coding, [Online].

Available:

http://www.chiariglione.org/mpeg/working_documents.htm, March

2003.

[3] I. E. G. Richardson, “H.264/MPEG-4 Part 10: Transform &

Quantization,” A white paper. [Online]. Available:

http://www.vcodex.com, March 2003.

[4] I. E. G. Richardson, H.264 and MPEG-4 Video Compression: Video

Coding for Next-generation Multimedia, John Wiley & Sons Ltd.,

Sussex, England, December 2003.

[5] G. Sullivan, P. Topiwala, and A. Luthra, “The H.264 Advanced

Video Coding Standard: Overview and Introduction to the Fidelity

Range Extensions,” SPIE Conference on Application of Digital Image

Processing XXVII, Colorado, USA, August 2004.

[6] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra,

“Overview of the H.264/AVC Video Coding Standard,” IEEE

Transactions on Circuits and Systems For Video Technology, Vol. 13,

No. 7, pp. 560-576, July 2003.

[7] “Emerging H.264 Standard: Overview and TMS320DM642-Based

Solutions for Real-Time Video Applications,” A white paper. [Online].

Available:

http://www.ubvideo.com, December 2002.

[8] K. Denolf, C. Blanch, G. Lafruit, and A. Bormans, “Initial memory

complexity analysis of the AVC codec,” IEEE Workshop on Signal

Processing Systems, 2002 (SIPS’02), pp. 222-227, October 2002.

[9] T. Stockhammer, M. M. Hannuksela, T. Wiegand, “H.264/AVC in

wireless environments,” IEEE Transactions on Circuits and Systems For

Video Technology, Vol. 13, No. 7, pp. 657-673, July 2003.

[10] M. Horowitz, A. Joch, F. Kossentini, A. Hallapuro, “H.264/AVC

Baseline Profile Decoder Complexity Analysis,” IEEE Transactions on

Circuits and Systems For Video Technology, Vol. 13, No. 7, pp. 704-

716, July 2003.

[11] H. S. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky,

“Low-Complexity Transform and Quantization in H.264/AVC,” IEEE

Transactions on Circuits and Systems For Video Technology, Vol. 13,

No. 7, pp. 598-603, July 2003.

[12] M. Wien, “Clean-up and improved design consistency for ABT,”

Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, doc. JVT

–E025.

[13] S. Gordon, D. Marpe, and T. Wiegand, “Simplified Use of 8x8

Transform – Proposal,” Joint Video Team (JVT) of ISO/IEC MPEG and

ITU-T VCEG, doc. JVT –J029.

[14] S. Gordon, D. Marpe, and T. Wiegand, “Simplified Use of 8x8

Transform – Updated Proposal & Results,” Joint Video Team (JVT) of

ISO/IEC MPEG and ITU-T VCEG, doc. JVT –K028, Munich, Germany,

March 2004.

[15] S. Gordon, “Simplified Use of 8x8 Transform,” Joint Video Team

(JVT) of ISO/IEC MPEG and ITU-T VCEG, doc. JVT –I022, San

Diego, USA, September 2003.

[16] I. Amer, W. Badawy, and G. Jullien, “Towards MPEG-4 Part 10

System On Chip: A VLSI Prototype For Context-Based Adaptive

Variable Length Coding (CAVLC),” accepted in IEEE Workshop on

Signal Processing Systems, Austin, Texas, USA, October 2004.

[17] I. Amer, W. Badawy, and G. Jullien, “A VLSI Prototype for

Hadamard Transform with Application to MPEG-4 Part 10,” accepted in

IEEE International Conference on Multimedia and Expo, Taipei,

Taiwan, June 2004.

[18] I. Amer, W. Badawy, and G. Jullien, “Hardware Prototyping for The

H.264 4x4 Transformation,” proceedings of IEEE International

Conference on Acoustics, Speech, and Signal Processing, Montreal,

Quebec, Canada, Vol. 5, pp. 77-80, May 2004.

[19] I. Amer, W. Badawy, and G. Jullien, “A SystemC Model for the

MPEG-4 Part 10 4x4 DCT-like Transformation and Quantization,”

ISO/IEC JTC1/SC29/WG11 M10830, Redmond, USA, July 2004.

[20] I. Amer, W. Badawy, and G. Jullien, “A Hardware Block for the

MPEG-4 Part 10 4x4 Transformation and Quantization,” ISO/IEC

JTC1/SC29/WG11 M10829, Redmond, USA, July 2004.

[21] I. Amer, W. Badawy, and G. Jullien, “A SystemC model for 4x4

Hadamard Transform and Quantization with application to MPEG-4 Part

10,” ISO/IEC JTC1/SC29/WG11 M10828, Redmond, USA, July 2004.

[22] I. Amer, W. Badawy, and G. Jullien, “A Hardware Block for 4x4

Hadamard Transform and Quantization in MPEG-4 Part 10,” ISO/IEC

JTC1/SC29/WG11 M10827, Redmond, USA, July 2004.

[23] I. Amer, W. Badawy, and G. Jullien, “A SystemC model for 2x2

Hadamard Transform and Quantization with Application to MPEG–4

Part 10,” ISO/IEC JTC1/SC29/WG11 M10826, Redmond, USA, July 04.

[24] I. Amer, W. Badawy, and G. Jullien, “A Hardware Block for 2x2

Hadamard Transform and Quantization with Application to MPEG–4

Part 10,” ISO/IEC JTC1/SC29/WG11 M10825, Redmond, USA, July 04.

[25] I. Amer, W. Badawy, and G. Jullien, “An IP Block for MPEG-4 Part

10 Context-Based Adaptive Variable Length Coding (CAVLC),”

ISO/IEC JTC1/SC29/WG11 M10824, Redmond, USA, July 2004.

[26] I. Amer, W. Badawy, and G. Jullien, “A Proposed Hardware

Reference Model for Spatial Transformation and Quantization in H.264,”

accepted in Journal of Visual Communication and Image Representation

Special Issue on Emerging H.264/AVC Video Coding Standard.

II - 1140

➡ ➠

