
A HIGH-PERFORMANCE HARDWARE IMPLEMENTATION OF THE H.264 

SIMPLIFIED 8X8 TRANSFORMATION AND QUANTIZATION 

Ihab Amer, Wael Badawy, and Graham Jullien

Advanced Technology Information Processing Systems (ATIPS) 

Calgary, Alberta, Canada, T2N 1N4 

{amer, badawy, jullien}@atips.ca 

ABSTRACT

The recently approved digital video standard known as 

H.264 promises to be an excellent video format for use 

with a large range of applications. Real-time 

encoding/decoding is a main requirement for adoption of 

the standard to take place in the consumer marketplace. 

Transformation and quantization in H.264 are relatively 

less complex than their correspondences in other video 

standards. Nevertheless, for real-time operation, a speedup 

is required for such processes. Especially after the recent 

proposal to use an 8x8 integer approximation of Discrete 

Cosine Transform (DCT) to give significant compression 

performance at Standard Definition (SD) and High 

Definition (HD) resolutions. This paper discusses a high-

performance hardware implementation of the H.264 

simplified 8x8 transformation and quantization. The 

results show that the architecture satisfies the real-time 

constraints required by different digital video applications.  

1. INTRODUCTION

Due to the remarkable progress in the development of 

products and services offering full-motion digital video, 

digital video coding currently has a significant economic 

impact on the computer, telecommunications, and imaging 

industry [1]. This raises the need for an industry standard 

for compressed video representation with extremely 

increased coding efficiency and enhanced robustness to 

network environments [2].   

Since the early phases of the technology, international 

video coding standards have been the engines behind the 

commercial success of digital video compression.  ITU-T 

H.264/MPEG-4 (Part 10) Advanced Video Coding 

(commonly referred as H.264/AVC) is the newest entry in 

the series of international video coding standards. It was 

developed by the Joint Video Team (JVT), which was 

formed to represent the cooperation between the ITU-T 

Video Coding Experts Group (VCEG) and the ISO/IEC 

Moving Picture Experts Group (MPEG) [3]-[5].  

Compared to the currently existing standards, H.264 

has many new features that makes it the most powerful 

and state-of-the-art standard [5]. Network friendliness and 

good video quality at high and low bit rates are two 

important features that distinguish H.264 from other 

standards [6]-[10].  

Unlike current standards, the usual floating-point 8x8 

DCT is not the basic transformation in H.264. Instead, a 

new transformation hierarchy is introduced that can be 

computed exactly in integer arithmetic. This eliminates 

any mismatch issues between the encoder and the decoder 

in the inverse transform [7], [11]. In the initial H.264 

standard, which was completed in May 2003, the 

transformation is primarily 4x4 in shape, which helps 

reduce blocking and ringing artifacts.  

In July 2004, a new amendment called the Fidelity 

Range Extensions (FRExt, Amendment I) was added to 

the H.264 standard. This amendment is currently receiving 

wide attention in the industry. It actually demonstrates 

further coding efficiency against current video coding 

standards, potentially by as much as 3:1 for some key 

applications. The FRExt project produced a suite of some 

new profiles collectively called High profiles. Beside 

supporting all features of the prior Main profile, all the 

High profiles support an adaptive transform-block size 

and perceptual quantization scaling matrices [5]. In fact, 

the concept of adaptive transform-block size has proven to 

be an efficient coding tool within H.264 video coding 

layer design [12]. This led to the proposal of a seamless 

integration of a new 8x8 integer approximation of DCT 

(and prediction modes) into the specification with the least 

possible amount of technical and syntactical changes [13]-

[15]. 

So far, most of the work in H.264 is software 

oriented. However, a hardware implementation is 

desirable for consumer products to provide compactness, 

low power, robustness, cheap cost, and most importantly, 

real-time operation. In our previous work [16]-[26], we 

proposed hardware implementations for various blocks in 

the initial H.264 transformation hierarchy model and 

entropy coding. In this paper, we propose a high-

performance hardware implementation of the H.264 

newly-proposed simplified 8x8 transform and 

quantization.
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The rest of this paper is organized as follows: Section 

2 overviews the H.264 simplified 8x8 transform and 

quantization. In section 3, a description of the proposed 

hardware prototype is introduced. Section 4 presents the 

simulations and results achieved. Finally, section 5 

concludes the paper. 

2. H.264 SIMPLIFIED 8X8 TRANSFORM AND 

QUANTIZATION 

An integer approximation of 8x8 DCT was proposed in 

FRExt to be added to the JVT specification based on the 

fact that at SD resolutions and above, the use of block 

sizes smaller than 8x8 is limited [15]. This transform is 

applied to each block in the luminance component of the 

input video stream. It allows for bit-exact implementation 

for all encoders and decoders.  In spite of being more 

complex compared to the 4x4 DCT-like transform that is 

adopted by the initial H.264 specification, the proposed

transform gives excellent compression performance when 

used for high-resolution video streams using a number of 

operations comparable to the number of operations 

required for the corresponding four 4x4 blocks using the 

fast butterfly implementation of the existing 4x4 transform 

[13], [14]. 

The 2-D forward 8x8 transform is computed in a 

separable way as a 1-D horizontal (row) transform 

followed by a 1-D vertical (column) transform as shown 

in Equation (1). 

       
T

f f
W C XC                        (1) 

where the Matrix 
f

C is given by Equation (2). 
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Each of the 1-D transforms is computed using 3-

stages fast butterfly operations as follows [14]:  

Stage 1: 
a[0] = x[0] + x[7]; 

a[1] = x[1] + x[6]; 

a[2] = x[2] + x[5]; 

a[3] = x[3] + x[4]; 

a[5] = x[0] - x[7]; 

a[6] = x[1] - x[6]; 

a[7] = x[2] - x[5]; 

a[8] = x[3] - x[4]; 

Stage 2: 
b[0] = a[0] + a[3]; 

b[1] = a[1] + a[2]; 

b[2] = a[0] - a[3]; 

b[3] = a[1] - a[2]; 

b[4] = a[5] + a[6] + ((a[4]>>1) + a[4]); 

b[5] = a[4] – a[7] – ((a[6]>>1) + a[6]); 

b[6] = a[4] + a[7] – ((a[5]>>1) + a[5]); 

b[7] = a[5] – a[6] + ((a[7]>>1) + a[7]); 

Stage 3: 
w[0] = b[0] + b[1]; 

w[1] = b[2] + (b[3]>>1); 

w[2] = b[0] - b[1]; 

w[3] = (b[2]>>1) - b[3]; 

w[4] = b[4] + (b[7]>>2); 

w[5] = b[5] + (b[6]>>2); 

w[6] = b[6] – (b[5]>>2); 

w[7] = -b[7] + (b[4]>>2); 

Hence, the 2-D transform operation can be 

implemented using signed additions and right-shifts only, 

avoiding expensive multiplications. The post-scaling and 

quantization formulas are shown in Equations (3)-(5). 

          15 ( 6)qbits QP DIV                  (3) 

( . , 1)
ij ij

Z SHR W MF f qbits    (4) 

            ( ) ( )
ij ij

Sign Z Sign W                          (5) 

where QP is a quantization parameter that enables the 

encoder to accurately and flexibly control the trade-off 

between bit rate and quality. It can take any integer value 

from 0 up to 51. Zij is an element in the quantized 

transform coefficients matrix. MF is a multiplication 

factor that depends on (m = QP mod 6) and the position (i,
j) of the element in the matrix as shown in Table 1. SHR()

is a procedure that right-shifts the result of its first 

argument a number of bits equal to its second argument. f
is defined in the reference model software as 2qbits/3 for 

Intra blocks and 2qbits/6 for Inter blocks [3], [4]. 

Table 1. Multiplication Factor (MF)
m (i, j) 

 G0

(i, j) 

 G1

(i, j) 

 G2

(i, j) 

 G3

(i, j) 

 G4

(i, j) 

 G5

0 13107 11428 20972 12222 16777 15481 

1 11916 10826 19174 11058 14980 14290 

2 10082 8943 15978 9675 12710 11985 

3 9362 8228 14913 8931 11984 11295 

4 8192 7346 13159 7740 10486 9777 

5 7282 6428 11570 6830 9118 8640 

*G0: i = [0, 4], j = [0, 4]                      

    G1: i = [1, 3, 5, 7], j = [1, 3, 5, 7] 

    G2: i = [2, 6], j = [2, 6] 

    G3: (i = [0, 4], j = [1, 3, 5, 7])  (i = [1, 3, 5, 7], j = [0, 4]) 

    G4: (i = [0, 4], j = [2, 6])  (i = [2, 6], j = [0, 4]) 

    G5: (i = [2, 6], j = [1, 3, 5, 7])  (i = [1, 3, 5, 7], j = [2, 6])
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3. HARDWARE PROTOTYPE 

A block diagram of the proposed architecture is shown in 

Figure 1. The architecture uses 8x8 parallel blocks, QP, a 

synchronizing clock, and an enabling signal (Input Valid) 

as inputs. It outputs the quantized transform coefficients 

and the signal Output Valid. A block diagram of the 

architecture is shown in Figure 1. 

Figure 1. A block diagram of the proposed hardware 

architecture 

The architecture is designed to perform pipelined 

operations, which drastically reduces the required memory 

resources and accesses, avoids any stall states, and 

dramatically improves the throughput of the architecture. 

Figure 2 gives a detailed block diagram of the proposed 

architecture showing the flow of signals between the main 

stages of the design. 

Figure 2. A detailed block diagram of the proposed 

hardware architecture 

The architecture is composed of two main stages. The 

first one contains two blocks; the Transform block, which 

is composed of the three stages of the fast butterfly 

operations mentioned in Section 2, and the QP-Processing 

block, which is responsible for calculating the 

intermediate variables needed for quantization, such as f,

qbits, and (P0 – P5), which are the values of the 

multiplication factors at the six different groups of 

positions in the matrix as shown in Table 1. Finally, the 

Quantization process takes place in the second main stage 

of the design. This is done by performing the addition and 

multiplication operations in the Arithmetic block, and 

finally the shifting operations in the Shifter block. 

4. SIMULATIONS AND RESULTS 

The architecture of the H.264 simplified 8x8 

transformation is prototyped using VHDL language. It is

simulated using the Mentor Graphics© ModelSim 5.4® 

simulation tool, and synthesized using Synplify Pro 7.1® 

from Synplicity©. The target technology is the FPGA 

device XC2V4000 (BF957 package) from the Virtex-II 

family of Xilinx©. 

Table 2 summarizes the performance of the 

prototyped architecture. 

Table 2. Performance of the prototyped architecture 

Critical 

Path (ns) 

CLK Freq. 

(MHz) 

# of i/p 

Buffers

# of o/p 

Buffers

14.598 68.5 583 1217 
# of I/O 

Reg. Bits  

#of Reg. Bits 

not inc. (I/O) 

Total # of 

LUT

# of clock 

buffers

1219 16893 29018 1 

A 14.598 ns critical path is estimated by the synthesis 

tool. Since at steady state, the architecture outputs a whole 

8x8 encoded block with each clock pulse, therefore the 

time required to encode a whole SD frame of 704  480 

pixels can be calculated as follows:  

Time required per CIF frame =  

Time required per block  Number of        

blocks per frame  

           = 14.598 ns 
Numberof pixels per frame

Numberof pixels perblock

          = 14.598 ns 
(704 480)

(8 8)

pixels per frame

pixels perblock

         77.1 s

This value is about 216 times less than the 16.67 ms
time required for continuous motion (assuming a refresh 

rate of 60 frames/sec). Similarly, it can be shown that the 

time required to encode a whole High Definition 
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Television (HDTV) frame of a 720 1280 pixels 

resolution, and a 60 frames/sec frame rate is 0.21 ms,

which is about 79 times less than the 16.6 ms time 

required for continuous motion. Hence, the introduced 

architecture satisfies the real-time constraints for SD, HD, 

and even higher resolution video formats. 

5. CONCLUSION 

A high-performance architecture for prototyping the 

simplified 8x8 transformation and quantization, which 

was recently adopted by the H.264 standard is developed. 

The architecture is designed to perform pipelined 

operations, which drastically reduces the required memory 

resources and accesses, avoids any stall states, and 

dramatically improves the throughput of the architecture.

It satisfies the real-time constraints required by different 

high-resolution digital video applications. The system is 

simulated using ModelSim 5.4®, and synthesized using 

Synplify Pro 7.1®, targeting the FPGA device XC2V4000 

(BF957 package) from the Virtex-II family of Xilinx©. 

The ideal way to utilize the proposed design is to embed it 

to an overall system, where the reference software runs on 

a Digital Signal Processor (DSP), and the computationally 

extensive operations performed in the hardware block. 
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