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ABSTRACT

When a document or a sequence of characters is tampered, wa-
termarking should be able to not only detect the tampering but
also restore it. Towards this goal, self-embedding is used where
the watermark is a copy of the sequence itself. Restoration algo-
rithms for substitution attack are proposed for two variants of self-
embedding. These algorithms are analyzed to show where they fail
and how to avoid these. Strategies to cope with deletion/insertion
attacks are also mentioned.

1. INTRODUCTION

Watermarking is used on document and other media for diverse
purposes such as copyright protection, annotation, authentication,
fingerprinting, copy control and broadcast monitoring, and among
others, content protection. The aim of contect protection is to pro-
tect the content of a text document, say, against editing attack.
While authentication stops at detecting tampering, localization de-
tects the parts of the document that have been modified. The ulti-
mate aim of content protection is to be able to restore the original
text.

Typical watermarks that are embedded in a media carry infor-
mation unrelated or distantly related to the media itself. Exam-
ples are trademark, author and copyright information, etc. Self-
embedding [1] refers to the watermark carrying the same (albeit
partial) information as the media. For example, watermark based
restoration/recovery for images [1,2] use an watermark which is a
compressed or partial version of the image itself. For restoration
purpose, information about a part A of the original media should
be embedded either in a distributed fashion or localized in another
part B of the media. Then, if A is tampered with, the information
may be approximately restored from the entire media (distributed)
or part B (localized) which is not tampered.

In this work we investigate self-embedding and restoration in
a conceptual framework of text documents. We are not aware of
any prior work on document watermark towards restoration. It is
assumed that a printed or handwritten text document consists of a
sequence of characters (from a finite set), and we are interested in
restoring only the original character sequence and not its appear-
ance such as font. Watermarking for printed or handwritten bi-
nary documents is done in two ways. First group of schemes such
as line/word shifting, bounding box method, and hybrid method,
change the space between text objects [3]. In second group of
schemes, boundary pixels are flipped individually or in a group [4],
or parameters such as thickness or curvature are modified. Since
the capacity of second schemes is more than the first schemes, it is
better suited for restoration. For example, 13 characters of 7 bits
each are embedded in a signature in [5]. Our framework assumes
use of a pixel-flip watermarking and detection scheme that (i) has

enough capacity to watermark a character in a printed character,
and (ii) detects the watermark blindly without error in absence of
any attack. For example, since 7 bits are sufficient to represent the
alphanumeric character set, an watermark of 7 bit capacity is em-
bedded in each printed character. Editing of a text document may
involve substitution, insertion and deletion. We consider two self-
embedding schemes, and propose restoration schemes for these
under certain assumptions. A text document with most of it edited
is beyond restoration. We explore how much restoration is achiev-
able and investigate under what condition the restoration fails.

2. SELF-EMBEDDING

Let the text sequence be [C0, C1, ..., Cn−1] of length n, where Ci

denotes a character and (Ci) denotes a watermark. Let [p(0), p(1),
..., p(n−1)] be a permutation of [0, 1, ..., n−1]. Then watermark
of each character Cp(i) is embedded in another printed character
Ci. Two permutation schemes are considered in this work. In
cyclic self-embedding, p(i) = (i − c)%n. The cyclic shift c con-
stitutes the secret key. In random self-embedding, a random per-
mutation [p(i)] is obtained from a seed. The seed and n constitute
the secret key.
Example: A sequence MR BUSH ON TV (without space) under
cyclic self-embedding with c = 7 will be:

M(U)R(S)B(H)U(O)S(N)H(T)O(V)N(M)T(R)V(B) (1)

Here p(0)=(0 − 7)%10=3, therefore the 3rd character C3=U will
be watermarked on the 0th character C0=M. The watermark (U)
embedded in the character M is denoted by M(U). In general,

ith character after self-embedding becomes C
(Cp(i))

i . For random
case with a permutation of [2,5,7,8,6,0,3,1,9,4] (obtained from a
seed 637 using Matlab function randperm), it is

M(B)R(H)B(N)U(T)S(O)H(M)O(U)N(R)T(V)V(S) (2)

The number of possible permutations of random self-embedding
is n!. The number of possible shifts in cyclic self-embedding is
n − 1 since c = 0 is not allowed. Since this number for random
case is much larger than for cyclic case, random self-embedding is
more secure.

3. RESTORING SUBSTITUTIONS

In substitution, one (or more) character Ci is replaced by another
character Ĉi. Originally Ci was embedded with the watermark
(Cp(i)). Now, the watermark detection algorithm extracts some
other watermark (#) from the substituted character Ĉi. During
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verification phase, each character is checked with its correspond-
ing watermark. For example, in (1), 7th watermark (M) should
match the p(7)=0th character M. One substitution, therefore, re-
sults in two failures. At location i, the watermark corresponding
to Ci (the watermark is intact since it is in some other location)
doesn’t match the substituted character Ĉi. At location p(i), the
watermark (#) from Ĉi doesn’t match Cp(i).

However, there is a distinction between these two failures.
Consider location p(i). Even though the character Cp(i) in this lo-
cation failed the verification, the watermark in this location (Cp(p(i)))
is fine since it matches the corresponding character Cp(p(i)). (No-
tation p(p(i)) means permutation of permutation of i. For the
cyclic example, for i=0, p(0)=3, and p(p(0))=p(3)=6.) Assuming
that an accidental match is unlikely, we therefore conclude that
location p(i) is indeed untampered. Thus, the untampered loca-
tions are (i) locations whose characters pass the verification, or (ii)
locations whose watermarks pass the verification.

3.1. Restoration algorithms

The proposed restoration algorithm for cyclic self-embedding is:

1. Find all untampered locations.
2. Declare the remaining locations as tampered locations. If lo-
cation i is tampered, then its watermark is embedded in location
(i + c)%n. If location (i + c)%n is also tampered, declare failure
to restore. Else, restore Ci from (Ci) found in location (i+ c)%n.

Example (contd.): Let the cyclic self-embedded sequence of (1) be
tampered to MR BEAN ON TV, so that the received sequence is
(with substituted characters shown in italics)

M(U)R(S)B(H)E(#)A($)N (%)O(V)N(M)T(R)V(B)

Verification at location 0 is to check M=(M) (watermark of loca-
tion (0+7)%10=7) or not, which passes. While characters in lo-
cations 0,1,2,9 pass the verification test, watermarks in locations
6,7,8 also pass the test. So untampered locations are 0,1,2,6,7,8,9.
Therefore tampered locations are 3,4,5. Since corresponding wa-
termarks in locations 0,1,2 are all untampered, all substitutions are
restored successfully to the original sequence.
The proposed restoration algorithm for random self-embedding is:

1. Find all failure locations. A verification failure in location i
means (Ci) �= Ci. Therefore, either the character Ci is tampered,
or the character Cj that carries (Ci) is tampered (or both) where
p(j) = i. For each failure location this pair (i, j) is stored in a
pair array.
2. If a location of a pair in the pair list is in untampered list, then
its partner must be tampered. Therefore, remove this pair from the
pair list and insert its partner into the tampered list.
3. If a location of a pair in the pair list is in tampered list but its
partner is not, then its partner must be fine. Therefore, remove this
pair from the pair list.
4. Repeat steps 2 and 3 until: (i) no pair is left–then declare the
tampered locations; or (ii) pair is non-empty but no further change
occurs–then the algorithm fails to resolve which one is tampered
with, and inserts both locations of the remaining pairs into the tam-
pered list. Finally, the tampered locations are restored, if possible,
as in step 3 of the cyclic restoration algorithm.

Example (contd.): For the random self-embedded sequence of (2)
and the same tampering as before, the received sequence is

M(B)R(H)B(N)E(#)A($)N (%)O(U)N(R)T(V)V(S)

After verification, locations 0,3,4,5,6,8 are failure. Since failure
in location 0 means tampering in either location 0 or location 5, a
pair (0,5) is stored. Continuing, the pair array becomes

[(0,5) (3,6) (4,9) (5,1) (6,4) (8,3)].
Since the untampered locations are 0,1,2,7,8,9, in step 2 the first
pair (0,5) is removed from this array and location 5 is inserted into
the tampered list. After step 2 the pair list is [(3,6) (6,4)] and the
tampered list is 3,4,5. Note that unlike the cyclic case, checking
the untampered list is not sufficient. In fact, location 6 does not
appear in the untampered list, and if the algorithm stops here then
location 6 will also be taken as tampered. This justifies the need
for steps 3 and 4. In step 3, the pair (3,6) contains a tampered lo-
cation 3, so it is removed. Similarly, (6,4) is also removed, and the
algorithm terminates with substitution locations 3,4,5, all of which
are restored successfully.

3.2. Analysis of the algorithms

The restoration algorithms may fail in two ways; restoration fail-
ure when it cannot restore a detected location, and extraneous de-
tection when it detects an untampered location as tampered. While
such failures are unavoidable for a large number of substitutions,
they also occur for a few (even 1) substitutions, which is a more
serious limitation of this kind of restoration. Below we analyze
and quantify such cases for both self-embedding schemes.

A permutation [p(i)] has a fixed point if i = p(i) for some
i. Then Ci is embedded with its own watermark. Therefore, Ci

can not be restored if it is substituted. For cyclic self-embedding,
since c = 0 is not used, there is no fixed point. For random self-
embedding, let the number of permutations with exactly k fixed
points be Fk(n) for length n sequences. These permutations are
obtained by choosing k locations out of n, placing p(i) = i in
these k locations, and choosing any permutation without fixed
point for the remaining n − k locations. Therefore, Fk(n) =
nCkF0(n − k) for 0 ≤ k ≤ n, where F0(0) = 1 is assumed.
Sum of the permutations with k = 0, ..., n fixed points equals all
possible permutation n!. Therefore,

n! =

n∑

k=0

Fk(n) =

n∑

k=0

nCkF0(n − k). (3)

Assuming all permutations are equally likely, the probability that
a random permutation will be free of fixed point is pN (n) =
F0(n)/n!. From (3) the following recursion is obtained.

n∑

k=0

pN (n − k)/k! = 1

If any random permutation is used, then for a single substitution,
the probability of restoration failure is obtained by multiplying the
probability of k fixed points with the probability of the substitution
falling in one of these k locations, and summing for all k �= 0.

n∑

k=1

Fk(n)

n!
· k

n
=

n∑

k=1

pN(n − k)

k!
· k

n

Figure 1 (left) shows this probability which, unfortunately, is sig-
nificant. Therefore, it may be prudent to use only those permuta-
tions that are free of fixed points. Unfortunately, pN(n) converges
to a small value for large n as shown in figure 1 (right). Thus, only
about 37% of the random permutations are free of fixed points.
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Fig. 1. Probability of restoration failure in random permutation
for a single substitution (left) and probability of fixed point free
random permutations (right) for different sequence length n

A permutation has an attarctor cycle of periodicity 2 if i =
p(p(i)) for some i. Let j = p(i) in this case. Then two characters
Ci and Cj are embedded with each other’s watermark. If both of
them are substituted, neither can be restored, and two restoration
failures occur. If any one of them is substituted, both locations
appear in the failure list, and there is no way to determine which
one is untampered (for both cyclic and random cases). Therefore,
both locations are declared tampered and cannot be restored. Thus,
extraneous detection occurs along with restoration failure. Clearly,
such cycles should be avoided. For cyclic self-embedding, a length
2 cycle exists for (i, i + c) only when n is even and c = n/2. For
random permutations the possibility is more, and as before, only
about 23% permutations are free of length 2 cycles.

Larger length cycles affect the performance in a similar way.
A length k cycle causes restoration failure if k substitutions occur
at these locations. If k/2 or more substitutions occur at these loca-
tions such that no two substitutions are more than 2 positions apart
on the cycle, then it causes extraneous detection and restoration
failure. For example, for a k = 4 cycle p, q, r, s, substitutions at
p, r will cause all four locations to be identified as tampered. For
cyclic permutation, such cycle occurs for specific shifts. For ex-
ample, length 3 cycle is present if n is divisible by 3 and c = n/3
or 2n/3. Length 4 cycle occurs if n is divisible by 4 and c = n/4
or 3n/4. The probability (fraction) of cyclic permutations having
length k cycle(s) may be found as follows. Assume length n is lo-
cally equiprobable, so that probability of n divisible by k is 1

k
. Let

Dk denote the set of divisors of k excluding 1 and k. Then length
k cycles occur for shifts c = ni

k
where i ∈ {1, ..k−1}\Dk (where

\ denotes set exclusion). For example, for k = 4, Dk = {2} and
c = ni

4
gives length 4 cycles where i ∈ {1, 3}. So k − 1 − |Dk|

shifts out of possible n− 1 give length k cycle. Therefore, assum-
ing equal likelihood of any shift, the probability of a cyclic permu-
tation having length k cycle is k−1−|Dk|

k(n−1)
. These probabilities for

k = 2 to 5 are plotted for various length n in figure 2. If length k
cycle is present, k substitutions in locations i, i+c, ..., i+(k−1)c
will result in restoration failure. The probability of such substitu-
tion is

1 · k − 1

n − 1
· k − 2

n − 2
· · · 1

n − k − 1
= 1/n−1Ck−1.

Product of both these probabilities gives the probability of failure
of k substitutions due to a length k cycle.

Therefore, for composite n, shifts which are large factors of n
or their multiples should be avoided. Note that as k becomes large,
the probability of failure from a length k cycle becomes small.
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Fig. 2. Probability that a cyclic permutation has length k attractor
cycle (for k = 2 to 5) for different sequence length n

Therefore, only smaller length cycles are cause for concern. For
random permutations the situation is same as before. The proba-
bility of a random permutation having m cycles of length k each is
independent of n (for large n). These probabilities for k = 1 to 4
(length 1 attractor is a fixed point) are plotted in figure 3 for small
values of m. It is indeed advisable to choose a random permutation
that is free of all small length cycles.

While above failures occur due to the permutation and can
be avoided, failures happen due to the restoration algorithms, too.
For example, let there be two substitutions at locations i and p(i).
Since location i is tampered, watermark of Cp(i) is no longer avail-
able, and location p(i) cannot be restored. This occurs indepen-
dent of any (cyclic/random) permutation. As another example,
consider two substitutions at locations i and p(p(i)). After ver-
ification, failure locations are i, p(i), p(p(i)), p(p(p(i))). While
location p(p(p(i))) is eventually declared untampered by the algo-
rithms, location p(i) remains tampered since its watermark (Cp(p(i)))
cannot be verified. Thus, extraneous detection occurs resulting in
restoration failure for location p(p(i)). This is a serious algorithm
failure, since the watermark of Cp(p(i)) is actually present and un-
tampered in the received sequence.

Figure 4 shows simulation results on a sequence of length 100.
Random and cyclic permutations are chosen to avoid known fail-
ures. Random substitutions are made with varying probabilities of
0.01 to 0.3, and the restoration algorithms are applied to estimate
the probabilities of restoration failure and extraneous detection.

To compare cyclic and random cases, the number of cyclic
permutations is much smaller than the number of random permu-
tations. However, cyclic permutation is free of fixed point. The
fraction (probability) of cyclic permutations having length k cy-
cle(s) is small and becomes smaller with larger length n. The per-
mutations (shifts) having such cycles follow certain conditions and
hence are easy to detect. On the other hand, the number of random
permutations is large. Random permutations may have fixed point
and length k cycles. The probability of having such cycles is larger
than the cyclic case, and is constant for large n. Further, detection
of permutations with cycles is by exhaustive checking. Restora-
tion algorithm for cyclic self-embedding is simpler than that for
random self-embedding. Results of figure 4 illustrate the superior
performance of random self-embedding.

4. RESTORING INSERTIONS AND DELETIONS

Insertion or deletion of characters pose a much more difficult chal-
lenge. In presence of insertion/deletion, the location of the wa-
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Fig. 3. Probability that a random permutation of large sequence
length n has exactly m attractor cycles of length k (k = 1,2,3,4)

termark (Ci) of a character Ci is no longer known, and has to be
searched. Since all characters are not distinct, the search may re-
sult in multiple or wrong match. We present here some ideas on
restoration with the assumption of small length insertion/deletion
(reasonable) and locally distinct sequence (not so reasonable), so
that multiple/wrong match is ruled out. (Another option is to use
sequence number in the embedding to make all characters distinct.)

Consider cyclic self-embedding with m characters deleted from
a single location. The verification stage now involves searching
the watermark in a local neighborhood. Characters which are lo-
cated on the same side of the deletion as their watermarks will
pass the verification. Let these locations be termed same. Char-
acters which are located on one side but their watermarks on an-
other side of the deletion, will show a smaller shift c − m. Let
these locations be change. Characters whose watermarks were
embedded in the deleted locations will fail the verification. Each
element i of same signifies that no deletion has occured between
{i, ..., i + c} (with modulo operation where appropriate). Over-
lap (union) of these segments gives the segment without deletion.
Similarly, each element i of change signifies that deletion has oc-
cured between {i, ..., i + c}. Intersection of these segments gives
the segment where deletion took place. From these two hypothe-
ses, the exact deletion location can be determined. Due to cyclic
nature, deletion at the beginning is not distinguishable from dele-
tion at the end. The deleted characters can be restored from their
watermarks. Note that if c < m then complete restoration is not
possible. So a large c is preferred.

Example: Consider the sequence I DONT SAY with c = 5 cyclic
self-embedding. If locations 3 and 4 are deleted, the received se-
quence is

I(N)D(T)O(S)S(I)A(D)Y(O)

During search and verification, watermark (I) of character I (loca-
tion 0) is found in location 3. Therefore the shift is 3, and loca-
tion 0 is placed in change list. Finally, only location 3 is in same
since its watermark is 5 characters apart. Locations 0,1,2 are in
change since their watermarks have shift of 3. Locations 4,5 do
not pass the verification. Now, from same list we know that lo-
cations {3,...,2}, or in between 3–4, 4–5, 5–0, 0–1, 1–2, have no
deletion. Also, from change list we find 3 segments where dele-
tion occured: {0,...,3}, {1,...,4}, and {2,...,5}. The intersection is
{2,3} which declares that 5−3 = 2 characters are deleted between
locations 2 and 3. These are then restored successfully from their
watermarks.

When insertion occurs, if the watermarks of the inserted char-
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Fig. 4. Simulation results showing both types of failure proba-
bilities for cyclic (solid) and random (dashed) permutations with
n = 100 for different probabilities of random substitution

acters are superfluous, then it is easy to detect these locations. If
not, then a strategy similar to deletion should be applied. same list
will contain locations with correctly shifted watermarks. change
list will contain locations with shift c + m. Remaining characters
may match some watermark, but likely with a shift other than c
and c + m, so they are not put in any list. The algorithm then
proceeds the same way as deletion.

For random self-embedding, the above strategy does not work.
This is because, unless we know the actual position of a character,
we do not know where its watermark is expected to be. However,
under certain assumptions it is possible to rule out other possibili-
ties and find the actual tampering. More research is needed before
a general strategy may be found.

5. CONCLUSION

The idea of self-embedding for document watermarking and restora-
tion is forwarded. Cyclic and random permutations are considered
as variants, and each has its advantages. Restoration algorithms for
substitution are proposed and analyzed to show where restoration
fails. Restoration strategies for single location deletion and in-
sertion with cyclic self-embedding is also proposed. Future work
towards multiple deletion/insertion and for random permutation is
being pursued. Simultaneous detection (and restoration) of sub-
stitution, insertion and deletion will be the ultimate goal towards
making document watermarking a powerful tool.
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