
REAL-TIME WHITEBOARD CAPTURE AND PROCESSING USING A VIDEO

CAMERA FOR TELECONFERENCING

Li-wei He, Zhengyou Zhang

Microsoft Research, One Microsoft Way, Redmond, WA, USA

Email: {lhe, zhang}@microsoft.com

ABSTRACT

This paper describes our recently developed system which

captures pen strokes on whiteboards in real time using an off-the-

shelf video camera. Unlike many existing tools, our system does

not instrument the pens or the whiteboard. It analyzes the

sequence of captured video images in real time, classifies the

pixels into whiteboard background, pen strokes and foreground

objects (e.g., people in front of the whiteboard), and extracts

newly written pen strokes. This allows us to transmit whiteboard

contents using very low bandwidth to remote meeting

participants. Combined with other teleconferencing tools such as

voice conference and application sharing, our system becomes a

powerful tool to share ideas during online meetings.

1. INTRODUCTION

A whiteboard is an effective and easy to use tool for meetings,

especially in scenarios such as brainstorming, lectures, project

planning, and patent disclosures. Sometimes, meeting participants

who are on conference call from remote locations are not able to

see the whiteboard content as the local participants do. In order to

enable this, the meeting sites often must be linked with expensive

video conferencing equipments. Such equipment includes a pan-

tilt-zoom camera which can be controlled by the remote

participants. It is still not always satisfactory because of viewing

angle, lighting variation, and image resolution, without

mentioning lack of functionality of effective archiving and

indexing of whiteboard contents. Other equipment requires

instrumentation either in the pens such as Mimio from Virtual Ink

or on the whiteboard such as SMARTBoard from SmartTech.

The system presented in this paper allows the user to write freely

on any existing whiteboard surface using any pen. To achieve

this, our system uses an off-the-shelf high-resolution video camera

which captures images of the whiteboard at 7.5Hz. From the

input video sequence, our algorithm separates people in the

foreground from the whiteboard background and extracts the pen

strokes as they are deposited to the whiteboard. To save

bandwidth, only newly written pen strokes are compressed and

sent to the remote participants. Furthermore, the images are white-

balanced and color-enhanced for greater compression rate and

better viewing experience than the original video.

There are a number of advantages in using a high-resolution video

camera over the sensing mechanism of pen devices or electronic

whiteboard. They are: 1) Without requiring special pens and

erasers makes the interaction much more natural. 2) Since the

system directly takes images of the whiteboard, there is no mis-

registration of the pen strokes. 3) As long as the users turn on the

system before erasing, the content will be preserved. 4) Images

captured with a camera provide much more contextual

information such as who was writing and which topic was

discussing (usually by hand pointing).

The paper is organized as follows: Section 2 discusses related

works and the design choices that we made. Section 3 explains

the technical challenges we encountered while building the

system. Section 4 describes how the developed real-time

whiteboard system is integrated in the Windows Messenger for

remote collaboration on a physical whiteboard. Section 5

concludes the paper.

2. SYSTEM DESIGN

The system described in this paper is a real-time extension to the

Whiteboard Capture System (WCS) that we developed two years

ago [1]. In WCS, we take pictures of the whiteboard continuously

using a Canon G2 digital still image camera. Because the camera

is connected to the host PC via low bandwidth USB 1.1, the frame

rate is limited to 5 second per frame. At such a low frame rate, we

made no attempt to use it as a real time conferencing tool. Our

algorithm was designed to analyze and browse offline meeting

recordings. From the input image sequence, we compute a set of

key frames that captures the history of the content on whiteboard

and the time stamps associated with each pen strokes. A key

frame contains all the visual content before a major erasure. This

information can then be used as a visual index to browse the audio

meeting recording in a very efficient way.

2.1 Capture Device

Since building the WCS, there have been tremendous advances in

digital imaging hardware. One notable example is the availability

of inexpensive high resolution video cameras and high-speed

USB 2.0 connection. For example, with Aplux MU2 video

camera connected to any PC with a USB 2.0 port, we are able to

capture 1.3 mega pixel images at 7.5 Hz. The resolution of each

video frame is 1280 pixels by 1028 pixels --- equivalent to 18 dpi

for a 6’ by 4’ board. At 7.5 Hz, the whiteboard content can be

captured in near real time – good enough to use in

teleconferences. For our particular scenario, it is a perfect

compromise between the NTSC video camera and the high-

resolution still image camera. Because of the available high

resolution, we do not need complex mechanical camera controls

such as in the ZombieBoard system [1].

II - 11130-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

2.2 Capture Interface Requirements

Like our previous WCS, our current system does not require

people to move out of the camera’s field of view during capture as

long as they do not block the same portion of the whiteboard

during the whole meeting. Unlike WCS, our system does not

need special installation or calibration. Sitting on its built-in

stand, the video camera can be placed anywhere as long as it has a

steady and clear view of the whiteboard. It can be moved

occasionally during the meeting. After each move, it will

automatically and quickly find the whiteboard region again (see

Section 3.3). This improvement made our system much more

portable and easier to use than our previous WCS.

Although the camera can be placed anywhere, the intended

capture area should occupy as much video frame as possible in

order to maximize the available image resolution. For better

image quality, it is also better to place the camera right in front of

the whiteboard in order to utilize the depth-of-field of the lens to

avoid out of focus.

3. TECHNICAL DETAILS

The input to our real-time system is a sequence of high-resolution

video images (see Figure 1). We need to analyze the image

sequence in order to separate the whiteboard background from the

person in the foreground and to extract the new pen strokes as

they appear on the whiteboard.

Our system encounters a set of unique technical challenges: 1)

The whiteboard background color cannot be pre-calibrated (e.g.

take a picture of a blank whiteboard) because each indoor room

has several light settings that may vary from session to session

and outdoor room lighting condition is influenced by the weather

and the direction of the sun; 2) Frequently, people move between

the camera and the whiteboard, and these foreground objects

occlude some portion of the whiteboard and cast shadow on it.

Within a sequence, there may be no single frame that is

completely un-occluded. We need to deal with these problems in

order to extract the new pen strokes.

Figure 1: Selected frames from an input image sequence.

The sequence lasts 82 seconds.

In order to segment the images into foreground objects and

whiteboard, we rely on two primary heuristics: 1) Since the

camera and the whiteboard are stationary, the whiteboard

background cells are stationary throughout the sequence until the

camera is moved; 2) Although sometimes foreground objects

(e.g., a person standing in front of the whiteboard) occlude the

whiteboard, the pixels that belong to the whiteboard background

are typically the majority. Our algorithms exploit these heuristics

extensively.

3.1 Strategies for Real-Time Analysis

We apply several strategies to make the algorithm efficient.

First, rather than analyzing the images at pixel level, we divide

each video frame into rectangular cells to lower the computational

cost. The cell size is roughly the same as what we expect the size

of a single character on the board (16 by 16 pixels in our

implementation). The cell grid divides each frame in the input

sequence into individual cell images, which are the basic unit in

our analysis.

Second, our analyzer is structured as a pipeline of six analysis

procedures. If a cell image does not meet the condition in a

particular procedure, it will not be further processed by the

subsequent procedures in the pipeline. Therefore, many cell

images do not go through all six procedures. At the end, only a

small number of cell images containing the newly appeared pen

strokes come out of the analyzer. The six procedures are:

1. Change detector: determines if the cell images have

changed since last frame.

2. Color estimator: computes the background color of the

cell images -- the color of blank whiteboard.

3. Background modeler: This is a dynamic procedure that

updates the whiteboard background model by

integrating the results computed from the previous

procedure which may have missing parts due to

occlusion or cast shadow by foreground objects.

4. Cell classifier: classifies the cell images into foreground

or whiteboard cells.

5. Stroke extractor: extracts the newly appeared strokes.

6. Color enhancer: enhances the color of extracted strokes.

The third strategy is specific to the video camera that we use in

our system. The Aplux MU2 allows the video frames to be

directly accessed in Bayer format, which is the single channel raw

image captured by the CMOS sensor. In general, a demosaicing

algorithm is run on the raw image to produce an RGB color image

[2]. By processing the cell images in raw Bayer space instead of

RGB space and delaying demosaicing until the final step and

running it only on the cells containing new strokes, we save

memory and processing by at least 66%. An additional benefit is

that we can obtain a higher quality RGB image at the end by using

a more sophisticated demosaicing algorithm than the one built

into the camera driver.

3.2 Analysis State

The analysis algorithm keeps some state as it processes the input

video frames: 1) The last video frame it has processed; 2) The age

of each cell image in the last frame. The age is defined to be the

number of frames that the cell image remains unchanged; 3) Cell

images with whiteboard content that have been detected so far; 4)

The whiteboard background model (see Section 3.5 for details).

3.3 Assigning Age to Cells

We first assign an age to each cell image. To determine whether a

cell image has changed, it is compared against the image of the

same cell (e.g., the cell in the same location) in previous frame

using the Normalized Cross-Correlation (NCC) algorithm. Note

that the NCC is applied to the images in the Bayer space.

If the comparison indicates a cell image is changed from the

previous frame, its age is set to 1. Otherwise, it is incremented by

1. At each frame, all the cells that have been stationary for more

than the age threshold (4 frames in our system -- about 0.5 second

II - 1114

➡ ➡

at 7.5 Hz) are considered to be the background candidates and fed

to the Whiteboard Color Model Update module. If the age is not

greater than the age threshold, the cell image is not processed

further during this frame. The age threshold is a trade-off

between the output delay and analysis accuracy.

We also compute the percentage of the cell images that have

changed. If the change is more than 90%, we assume something

drastic and global has happened since last frame (e.g. light setting

is changed, camera is moved, etc.). In that case, all state is re-

initialized. Other more localized changes (e.g. people moving

across, gradual change in sun light) are handled dynamically by

the Whiteboard Color Model Update Module.

3.4 Computing the Background Color

To classify cells, we need to know for each cell what the

whiteboard background color is (i.e. the color of the whiteboard

itself without anything written on it). The whiteboard background

color is also used in color-enhancing the extracted cell images

(see Section 3.8), so it needs to be estimated accurately to ensure

the quality.

Since the ink absorbs the incident light, the luminance of the

whiteboard pixels is higher than pen stroke pixels. The

whiteboard color within the cell is therefore the color with the

highest luminance. In practice, we average the colors of the

pixels in the top 10th percentile in order to reduce the error

introduced by sensor noise.

3.5 Updating the Whiteboard Color Model

The color computed from the previous section will give good

estimation of whiteboard color for the cells containing some

whiteboard background. However, it will give the wrong color

when the cells contain only the foreground or pen strokes (the

image on the left in Figure 2). We have to identify those cells to

prevent them from contaminating the whiteboard color model.

Figure 2: Left: Cell colors. Note that the strokes on the

whiteboard are removed by our background color

estimation algorithm. Center: Colors of cells that go into

the Update Module. Note the black regions are cells

filtered out by both the change detector and the color

estimator. Right: Integrated whiteboard color model.

We use a least-median-squares algorithm [3], which fits a global

plane over the colors and throws away the cells that contain

outlier colors. The least-median-squares algorithm uses the

median of the errors for selecting the best plane candidate instead

of a user-defined threshold. The remaining cells are considered as

background cells and their colors are used to update the

whiteboard background (the center image in Figure 2).

We then use a Kalman filter to dynamically incorporate the

background colors computed from the current frame into the

existing whiteboard background color model. The state for the

cell i is its color iC , together with variance iP representing the

uncertainty. iP is initially set to to indicate no observation is

available. The update is done in two steps:

Integrate. Let iO be the color of cell i computed from the

current frame. There is also an uncertainty, iQ , associated with

iO . In our current system, it can only be one of two values: if

the cell color is an outlier, 4 otherwise (i.e., the standard deviation

is equal to 2 intensity levels). Considering possible lighting

variation during the time elapsed since the last frame, the

uncertainty iP is first increased by (4 in our system, equivalent

to a standard deviation of 2). iC and iP are then updated

according to the classic Kalman filter formula:

Propagate. In order to fill the holes created by the cells that are

occluded by foreground objects and to ensure the color model is

smooth, the cell colors are propagated to the neighboring cells.

For each cell i, it incorporates the 4 of its neighbors’ states

according to the following:

Note that we increase the uncertainty of its neighbors by (4 in

our system) to allow color variation. A hole of size N generally

takes N/2 frames to get filled. Since the uncertainty in the cells

with filled values is much larger than the ones with the observed

values (due to added), the filled values are quickly supplanted

by the observed values once they become available. An example

of an integrated whiteboard color is the image on the right in

Figure 2. Note that the bookshelf area in the left side of the image

is never filled. Although the wall is also classified as whiteboard

region, it usually does not affect the overall extraction process.

3.6 Classifying Cells

To determine whether a cell image is foreground or whiteboard,

we carry out in two levels: individual and neighborhood.

At the individual cell level, given a good whiteboard color model,

we compute the Mahalanobis distance between the background

color of the cell image (computed in Section 3.4) and the color of

the corresponding cell location in whiteboard background model.

If the difference exceeds a threshold, the cell image is classified as

foreground object.

This result is then refined by utilizing spatial relationship among

the cell groups. The basic observation is that foreground cells

should not appear isolated spatially since a person usually blocks

a continuous region of the whiteboard. So at the neighborhood

level, we perform two filtering operations on every frame. First,

we identify isolated foreground cells and reclassify them as

whiteboard. This operation corrects the mis-classification of the

cells that are entirely filled with strokes. Second, we reclassify

whiteboard cells which are immediately connected to some

foreground cells as foreground cells. One main purpose of the

second operation is to handle the cells at the boundaries of the

foreground object. Notice that if such a cell contains strokes, the

second operation would incorrectly classify this cell as a

foreground object. It will be correctly re-classified as whiteboard

once the foreground object moves away. Extending the

foreground object boundary delays the recognition of strokes by a

few frames, but it prevents some parts of the foreground object

, (), (1)i
i i i i i i

i i

P
K C C K O C P K P

P Q
= = + ⋅ − = − ⋅

+

1 11
16

1 1 11
161 11

16

()

, (())
()

ii j j

j

i i i j

ji j

j

C P C P

C P P P
P P

− −

− − −
− −

+ + ∆
= = + + ∆

+ + ∆

II - 1115

➡ ➡

from being classified as strokes -- a far worse situation. Figure 3

shows the classification results of a typical input sequence.

Figure 3: Samples of the classification results for the

images in Figure 1. The classified foreground region is

tinted in purple and is larger than the actual foreground

object due to motion, shadow, and spatial filtering.

3.7 Extracting New Strokes

The cells classified as foreground are not further processed. For

cells classified as whiteboard, we check whether there is a

whiteboard cell already existing in the same cell location in the

output depository. If not, the cell is a new whiteboard cell. If a

whiteboard cell does exist, we still need to check whether the

existing cell and the current cell image are the same, using the

same image difference algorithm in Section 3.3 . If they are

different, the user probably has erased the whiteboard and/or

written something new, and therefore the whiteboard cell in the

output depository is replaced by the current cell image.

3.8 Color-enhancing the Stroke Images

At this stage, the newly extracted cell images are finally converted

from raw Bayer images into RGB images. Instead of the built-in

demosaicing algorithm in the camera driver, we use a demosaicing

algorithm proposed in [2], which handles edges much better.

After demosaicing, the images still look color-shifted and noisy.

We use the same procedure used in our previous WCS to white-

balance and color-enhance the resulting images [1]. The resulting

images contain only uniformly white background, which makes

the images print and compress much better.

4. TELECONFERENCING EXPERIENCE

Figure 4: Real-time whiteboard system inside the Windows

Messenger.

To test our system in a real teleconference setting, we adapted our

system to be a plug-in to the Whiteboard applet of the Windows

Messenger (see Figure 5). The Whiteboard applet allows the

users at two ends of a Windows Messenger session to share a

digital whiteboard. The user at one end can paste images or draw

geometric shapes and the user at the other end can see the same

change almost instantaneously. Usually, the user draws objects

with his mouse, which is very cumbersome. With our system, the

user can write on a real whiteboard instead. The changes to the

whiteboard content are automatically detected by our system and

incrementally pasted to the Whiteboard applet as small cell image

blocks. The Whiteboard applet is responsible for compressing

and synchronizing the digital whiteboard content shared with the

remote meeting participant. The remote participant can add

annotations on top of the whiteboard image using the mouse.

When used with other Windows Messenger tools, such as voice

conferencing and application sharing, whiteboard sharing

becomes a very useful tool in communicating ideas.

Because the resulting image contains only uniform background

and a handful of colors, the required communication bandwidth

after compression is proportional to the amount of content that the

user produces. Using GIF compression, a reasonably full

whiteboard image at 1.3 MP takes about 200K bytes. After the

initial image capture, the whiteboard updates take 50-100 bytes

per cell. Since usually only a handful of cells are changing at a

time when the whiteboard is in use, the sustained network

bandwidth requirement is far below those of video conferencing

solutions – suitable even for use in a dial-up network.

A video that captures our system in action will be shown during

the conference presentation and is included in the CD-ROM

proceedings. On the left is a down-sampled live video. On the

right is the digital whiteboard application shared with the remote

participant, i.e., the remote participant sees exactly what is shown

on this window. As can be observed, the person in front of the

whiteboard is filtered out. The new strokes show up in the digital

whiteboard with very short delay (about 1 second). Because of

white-balancing and color enhancement, the quality of the

whiteboard contents that the remote participant sees is obviously

much better than that of the video.

5. CONCLUDING REMARKS

The system presented in this paper allows the users to share ideas

on a whiteboard in a variety of teleconference scenarios.

Comparing to video conferencing solutions, our system takes only

a fraction of its bandwidth and is suitable even on dial-up

networks. Comparing to other whiteboard capture technologies,

the users of our system can write naturally using regular board

and pens. With new devices like electronic whiteboards and

Tablet PCs, the users are promised the ability to write freely in an

all electronic medium. But as the cost of those devices is still

quite high, we believe that the combination of the omnipresent

whiteboard and a low-cost high-resolution video camera will be a

very promising solution for the foreseeable future.

REFERENCES

[1] He, Li-wei, Liu, Z. and Zhang, Z. Why Take Notes? Use the
Whiteboard Capture System. ICASSP 2003.

[2] Malvar, Henrique S., He, L. and Cutler, R. High-Quality
Linear Interpolation for Demosaicing of Bayer-Patterned
Color Images. ICASSP 2004.

[3] Rousseeuw, P. and Leroy, A. Robust Regression and Outlier
Detection, John Wiley & Sons, New York, 1987.

[4] Saund, E. Image Mosaicing and a Diagrammatic User
Interface for an Office Whiteboard Scanner. Technical
Report, Xerox Palo Alto Research Center, 1999.

II - 1116

➡ ➠

