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ABSTRACT 

This paper describes our recently developed system which 

captures pen strokes on whiteboards in real time using an off-the-

shelf video camera.  Unlike many existing tools, our system does 

not instrument the pens or the whiteboard.  It analyzes the 

sequence of captured video images in real time, classifies the 

pixels into whiteboard background, pen strokes and foreground 

objects (e.g., people in front of the whiteboard), and extracts 

newly written pen strokes.  This allows us to transmit whiteboard 

contents using very low bandwidth to remote meeting 

participants. Combined with other teleconferencing tools such as 

voice conference and application sharing, our system becomes a 

powerful tool to share ideas during online meetings.

1. INTRODUCTION

A whiteboard is an effective and easy to use tool for meetings, 

especially in scenarios such as brainstorming, lectures, project 

planning, and patent disclosures. Sometimes, meeting participants 

who are on conference call from remote locations are not able to 

see the whiteboard content as the local participants do. In order to 

enable this, the meeting sites often must be linked with expensive 

video conferencing equipments. Such equipment includes a pan-

tilt-zoom camera which can be controlled by the remote 

participants. It is still not always satisfactory because of viewing 

angle, lighting variation, and image resolution, without 

mentioning lack of functionality of effective archiving and 

indexing of whiteboard contents. Other equipment requires 

instrumentation either in the pens such as Mimio from Virtual Ink 

or on the whiteboard such as SMARTBoard from SmartTech. 

The system presented in this paper allows the user to write freely 

on any existing whiteboard surface using any pen.  To achieve 

this, our system uses an off-the-shelf high-resolution video camera 

which captures images of the whiteboard at 7.5Hz.  From the 

input video sequence, our algorithm separates people in the 

foreground from the whiteboard background and extracts the pen 

strokes as they are deposited to the whiteboard.  To save 

bandwidth, only newly written pen strokes are compressed and 

sent to the remote participants. Furthermore, the images are white-

balanced and color-enhanced for greater compression rate and 

better viewing experience than the original video. 

There are a number of advantages in using a high-resolution video 

camera over the sensing mechanism of pen devices or electronic 

whiteboard. They are: 1) Without requiring special pens and 

erasers makes the interaction much more natural. 2) Since the 

system directly takes images of the whiteboard, there is no mis-

registration of the pen strokes. 3) As long as the users turn on the 

system before erasing, the content will be preserved. 4) Images 

captured with a camera provide much more contextual 

information such as who was writing and which topic was 

discussing (usually by hand pointing). 

The paper is organized as follows: Section 2 discusses related 

works and the design choices that we made.  Section 3 explains 

the technical challenges we encountered while building the 

system. Section 4 describes how the developed real-time 

whiteboard system is integrated in the Windows Messenger for 

remote collaboration on a physical whiteboard. Section 5 

concludes the paper. 

2. SYSTEM DESIGN 

The system described in this paper is a real-time extension to the 

Whiteboard Capture System (WCS) that we developed two years 

ago [1].  In WCS, we take pictures of the whiteboard continuously 

using a Canon G2 digital still image camera.  Because the camera 

is connected to the host PC via low bandwidth USB 1.1, the frame 

rate is limited to 5 second per frame.  At such a low frame rate, we 

made no attempt to use it as a real time conferencing tool.  Our 

algorithm was designed to analyze and browse offline meeting 

recordings.  From the input image sequence, we compute a set of 

key frames that captures the history of the content on whiteboard 

and the time stamps associated with each pen strokes.  A key 

frame contains all the visual content before a major erasure. This 

information can then be used as a visual index to browse the audio 

meeting recording in a very efficient way. 

2.1 Capture Device 

Since building the WCS, there have been tremendous advances in 

digital imaging hardware.  One notable example is the availability 

of inexpensive high resolution video cameras and high-speed 

USB 2.0 connection.  For example, with Aplux MU2 video 

camera connected to any PC with a USB 2.0 port, we are able to 

capture 1.3 mega pixel images at 7.5 Hz.  The resolution of each 

video frame is 1280 pixels by 1028 pixels --- equivalent to 18 dpi 

for a 6’ by 4’ board.  At 7.5 Hz, the whiteboard content can be 

captured in near real time – good enough to use in 

teleconferences.  For our particular scenario, it is a perfect 

compromise between the NTSC video camera and the high-

resolution still image camera. Because of the available high 

resolution, we do not need complex mechanical camera controls 

such as in the ZombieBoard system [1].  
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2.2 Capture Interface Requirements 

Like our previous WCS, our current system does not require 

people to move out of the camera’s field of view during capture as 

long as they do not block the same portion of the whiteboard 

during the whole meeting.  Unlike WCS, our system does not 

need special installation or calibration.  Sitting on its built-in 

stand, the video camera can be placed anywhere as long as it has a 

steady and clear view of the whiteboard.  It can be moved 

occasionally during the meeting.  After each move, it will 

automatically and quickly find the whiteboard region again (see 

Section 3.3 ).  This improvement made our system much more 

portable and easier to use than our previous WCS. 

Although the camera can be placed anywhere, the intended 

capture area should occupy as much video frame as possible in 

order to maximize the available image resolution.  For better 

image quality, it is also better to place the camera right in front of 

the whiteboard in order to utilize the depth-of-field of the lens to 

avoid out of focus. 

3. TECHNICAL DETAILS 

The input to our real-time system is a sequence of high-resolution 

video images (see Figure 1).  We need to analyze the image 

sequence in order to separate the whiteboard background from the 

person in the foreground and to extract the new pen strokes as 

they appear on the whiteboard. 

Our system encounters a set of unique technical challenges:  1) 

The whiteboard background color cannot be pre-calibrated (e.g. 

take a picture of a blank whiteboard) because each indoor room 

has several light settings that may vary from session to session 

and outdoor room lighting condition is influenced by the weather 

and the direction of the sun; 2) Frequently, people move between 

the camera and the whiteboard, and these foreground objects 

occlude some portion of the whiteboard and cast shadow on it.  

Within a sequence, there may be no single frame that is 

completely un-occluded.  We need to deal with these problems in 

order to extract the new pen strokes. 

Figure 1: Selected frames from an input image sequence. 

The sequence lasts 82 seconds. 

In order to segment the images into foreground objects and 

whiteboard, we rely on two primary heuristics: 1) Since the 

camera and the whiteboard are stationary, the whiteboard 

background cells are stationary throughout the sequence until the 

camera is moved; 2) Although sometimes foreground objects 

(e.g., a person standing in front of the whiteboard) occlude the 

whiteboard, the pixels that belong to the whiteboard background 

are typically the majority.  Our algorithms exploit these heuristics 

extensively. 

3.1 Strategies for Real-Time Analysis 

We apply several strategies to make the algorithm efficient.   

First, rather than analyzing the images at pixel level, we divide 

each video frame into rectangular cells to lower the computational 

cost.  The cell size is roughly the same as what we expect the size 

of a single character on the board (16 by 16 pixels in our 

implementation).  The cell grid divides each frame in the input

sequence into individual cell images, which are the basic unit in 

our analysis. 

Second, our analyzer is structured as a pipeline of six analysis 

procedures.  If a cell image does not meet the condition in a 

particular procedure, it will not be further processed by the 

subsequent procedures in the pipeline. Therefore, many cell 

images do not go through all six procedures.  At the end, only a 

small number of cell images containing the newly appeared pen 

strokes come out of the analyzer. The six procedures are: 

1. Change detector: determines if the cell images have 

changed since last frame. 

2. Color estimator: computes the background color of the 

cell images -- the color of blank whiteboard. 

3. Background modeler: This is a dynamic procedure that 

updates the whiteboard background model by 

integrating the results computed from the previous 

procedure which may have missing parts due to 

occlusion or cast shadow by foreground objects.  

4. Cell classifier: classifies the cell images into foreground 

or whiteboard cells. 

5. Stroke extractor: extracts the newly appeared strokes. 

6. Color enhancer: enhances the color of extracted strokes. 

The third strategy is specific to the video camera that we use in 

our system.  The Aplux MU2 allows the video frames to be 

directly accessed in Bayer format, which is the single channel raw 

image captured by the CMOS sensor. In general, a demosaicing 

algorithm is run on the raw image to produce an RGB color image 

[2].  By processing the cell images in raw Bayer space instead of 

RGB space and delaying demosaicing until the final step and 

running it only on the cells containing new strokes, we save 

memory and processing by at least 66%.  An additional benefit is 

that we can obtain a higher quality RGB image at the end by using 

a more sophisticated demosaicing algorithm than the one built 

into the camera driver. 

3.2 Analysis State 

The analysis algorithm keeps some state as it processes the input 

video frames: 1) The last video frame it has processed; 2) The age 

of each cell image in the last frame.  The age is defined to be the 

number of frames that the cell image remains unchanged; 3) Cell 

images with whiteboard content that have been detected so far; 4) 

The whiteboard background model (see Section 3.5  for details). 

3.3 Assigning Age to Cells 

We first assign an age to each cell image.  To determine whether a 

cell image has changed, it is compared against the image of the 

same cell (e.g., the cell in the same location) in previous frame 

using the Normalized Cross-Correlation (NCC) algorithm.  Note 

that the NCC is applied to the images in the Bayer space. 

If the comparison indicates a cell image is changed from the 

previous frame, its age is set to 1.  Otherwise, it is incremented by 

1.  At each frame, all the cells that have been stationary for more 

than the age threshold (4 frames in our system -- about 0.5 second 
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at 7.5 Hz) are considered to be the background candidates and fed 

to the Whiteboard Color Model Update module.  If the age is not 

greater than the age threshold, the cell image is not processed 

further during this frame.  The age threshold is a trade-off 

between the output delay and analysis accuracy. 

We also compute the percentage of the cell images that have 

changed.  If the change is more than 90%, we assume something 

drastic and global has happened since last frame (e.g. light setting 

is changed, camera is moved, etc.).  In that case, all state is re-

initialized.  Other more localized changes (e.g. people moving 

across, gradual change in sun light) are handled dynamically by 

the Whiteboard Color Model Update Module. 

3.4 Computing the Background Color 

To classify cells, we need to know for each cell what the 

whiteboard background color is (i.e. the color of the whiteboard 

itself without anything written on it).  The whiteboard background 

color is also used in color-enhancing the extracted cell images 

(see Section 3.8 ), so it needs to be estimated accurately to ensure 

the quality. 

Since the ink absorbs the incident light, the luminance of the 

whiteboard pixels is higher than pen stroke pixels.  The 

whiteboard color within the cell is therefore the color with the 

highest luminance.  In practice, we average the colors of the 

pixels in the top 10th percentile in order to reduce the error 

introduced by sensor noise.   

3.5 Updating the Whiteboard Color Model 

The color computed from the previous section will give good 

estimation of whiteboard color for the cells containing some 

whiteboard background.  However, it will give the wrong color 

when the cells contain only the foreground or pen strokes (the 

image on the left in Figure 2).  We have to identify those cells to 

prevent them from contaminating the whiteboard color model. 

Figure 2: Left: Cell colors. Note that the strokes on the 

whiteboard are removed by our background color 

estimation algorithm. Center: Colors of cells that go into 

the Update Module.  Note the black regions are cells 

filtered out by both the change detector and the color 

estimator.  Right: Integrated whiteboard color model. 

We use a least-median-squares algorithm [3], which fits a global 

plane over the colors and throws away the cells that contain 

outlier colors.  The least-median-squares algorithm uses the 

median of the errors for selecting the best plane candidate instead 

of a user-defined threshold.  The remaining cells are considered as 

background cells and their colors are used to update the 

whiteboard background (the center image in Figure 2). 

We then use a Kalman filter to dynamically incorporate the 

background colors computed from the current frame into the 

existing whiteboard background color model.  The state for the 

cell i is its color iC , together with variance iP  representing the 

uncertainty.  iP  is initially set to  to indicate no observation is 

available.  The update is done in two steps: 

Integrate.  Let iO  be the color of cell i computed from the 

current frame. There is also an uncertainty, iQ , associated with 

iO .  In our current system, it can only be one of two values:  if 

the cell color is an outlier, 4 otherwise (i.e., the standard deviation 

is equal to 2 intensity levels).  Considering possible lighting 

variation during the time elapsed since the last frame, the 

uncertainty iP   is first increased by  (4 in our system, equivalent 

to a standard deviation of 2).  iC  and iP   are then updated 

according to the classic Kalman filter formula:  

Propagate.  In order to fill the holes created by the cells that are 

occluded by foreground objects and to ensure the color model is 

smooth, the cell colors are propagated to the neighboring cells.  

For each cell i, it incorporates the 4 of its neighbors’ states 

according to the following: 

Note that we increase the uncertainty of its neighbors by  (4 in 

our system) to allow color variation.  A hole of size N generally 

takes N/2 frames to get filled.  Since the uncertainty in the cells 

with filled values is much larger than the ones with the observed 

values (due to added ), the filled values are quickly supplanted 

by the observed values once they become available.  An example 

of an integrated whiteboard color is the image on the right in 

Figure 2.  Note that the bookshelf area in the left side of the image 

is never filled.  Although the wall is also classified as whiteboard 

region, it usually does not affect the overall extraction process. 

3.6 Classifying Cells 

To determine whether a cell image is foreground or whiteboard, 

we carry out in two levels: individual and neighborhood. 

At the individual cell level, given a good whiteboard color model, 

we compute the Mahalanobis distance between the background 

color of the cell image (computed in Section 3.4 ) and the color of 

the corresponding cell location in whiteboard background model.  

If the difference exceeds a threshold, the cell image is classified as 

foreground object. 

This result is then refined by utilizing spatial relationship among 

the cell groups. The basic observation is that foreground cells 

should not appear isolated spatially since a person usually blocks 

a continuous region of the whiteboard. So at the neighborhood 

level, we perform two filtering operations on every frame. First, 

we identify isolated foreground cells and reclassify them as 

whiteboard. This operation corrects the mis-classification of the 

cells that are entirely filled with strokes. Second, we reclassify 

whiteboard cells which are immediately connected to some 

foreground cells as foreground cells. One main purpose of the 

second operation is to handle the cells at the boundaries of the 

foreground object. Notice that if such a cell contains strokes, the 

second operation would incorrectly classify this cell as a 

foreground object.  It will be correctly re-classified as whiteboard 

once the foreground object moves away.  Extending the 

foreground object boundary delays the recognition of strokes by a 

few frames, but it prevents some parts of the foreground object 
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from being classified as strokes -- a far worse situation.  Figure 3 

shows the classification results of a typical input sequence. 

Figure 3: Samples of the classification results for the 

images in Figure 1.  The classified foreground region is 

tinted in purple and is larger than the actual foreground 

object due to motion, shadow, and spatial filtering.

3.7 Extracting New Strokes 

The cells classified as foreground are not further processed.  For 

cells classified as whiteboard, we check whether there is a 

whiteboard cell already existing in the same cell location in the 

output depository.  If not, the cell is a new whiteboard cell.  If a 

whiteboard cell does exist, we still need to check whether the 

existing cell and the current cell image are the same, using the 

same image difference algorithm in Section 3.3 .  If they are 

different, the user probably has erased the whiteboard and/or 

written something new, and therefore the whiteboard cell in the 

output depository is replaced by the current cell image.  

3.8 Color-enhancing the Stroke Images 

At this stage, the newly extracted cell images are finally converted 

from raw Bayer images into RGB images.  Instead of the built-in 

demosaicing algorithm in the camera driver, we use a demosaicing 

algorithm proposed in [2], which handles edges much better. 

After demosaicing, the images still look color-shifted and noisy.  

We use the same procedure used in our previous WCS to white-

balance and color-enhance the resulting images [1].  The resulting 

images contain only uniformly white background, which makes 

the images print and compress much better. 

4. TELECONFERENCING EXPERIENCE 

Figure 4: Real-time whiteboard system inside the Windows 

Messenger.

To test our system in a real teleconference setting, we adapted our 

system to be a plug-in to the Whiteboard applet of the Windows 

Messenger (see Figure 5).  The Whiteboard applet allows the 

users at two ends of a Windows Messenger session to share a 

digital whiteboard.  The user at one end can paste images or draw 

geometric shapes and the user at the other end can see the same 

change almost instantaneously.  Usually, the user draws objects 

with his mouse, which is very cumbersome.  With our system, the 

user can write on a real whiteboard instead.  The changes to the 

whiteboard content are automatically detected by our system and 

incrementally pasted to the Whiteboard applet as small cell image 

blocks.  The Whiteboard applet is responsible for compressing 

and synchronizing the digital whiteboard content shared with the 

remote meeting participant.  The remote participant can add 

annotations on top of the whiteboard image using the mouse.  

When used with other Windows Messenger tools, such as voice 

conferencing and application sharing, whiteboard sharing 

becomes a very useful tool in communicating ideas. 

Because the resulting image contains only uniform background

and a handful of colors, the required communication bandwidth 

after compression is proportional to the amount of content that the 

user produces.  Using GIF compression, a reasonably full 

whiteboard image at 1.3 MP takes about 200K bytes.  After the 

initial image capture, the whiteboard updates take 50-100 bytes 

per cell.  Since usually only a handful of cells are changing at a 

time when the whiteboard is in use, the sustained network 

bandwidth requirement is far below those of video conferencing 

solutions – suitable even for use in a dial-up network. 

A video that captures our system in action will be shown during 

the conference presentation and is included in the CD-ROM 

proceedings.  On the left is a down-sampled live video. On the 

right is the digital whiteboard application shared with the remote 

participant, i.e., the remote participant sees exactly what is shown 

on this window. As can be observed, the person in front of the 

whiteboard is filtered out. The new strokes show up in the digital 

whiteboard with very short delay (about 1 second).  Because of 

white-balancing and color enhancement, the quality of the 

whiteboard contents that the remote participant sees is obviously 

much better than that of the video. 

5. CONCLUDING REMARKS 

The system presented in this paper allows the users to share ideas 

on a whiteboard in a variety of teleconference scenarios.  

Comparing to video conferencing solutions, our system takes only 

a fraction of its bandwidth and is suitable even on dial-up 

networks.  Comparing to other whiteboard capture technologies, 

the users of our system can write naturally using regular board 

and pens.  With new devices like electronic whiteboards and 

Tablet PCs, the users are promised the ability to write freely in an 

all electronic medium. But as the cost of those devices is still 

quite high, we believe that the combination of the omnipresent 

whiteboard and a low-cost high-resolution video camera will be a 

very promising solution for the foreseeable future. 
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