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ABSTRACT

With image-based relighting (IBL), one can render realistic relit
images of a scene without prior knowledge of object geometry in
the scene. However, traditional IBL methods require a large num-
ber of basis images, each corresponding to a lighting pattern, to
estimate the surface reflectance function (SRF) of the scene. In
this paper, we present a statistical approach to estimating the SRF
which requires fewer basis images. We formulate the SRF estima-
tion problem in a signal reconstruction framework. We use the prin-
cipal component analysis (PCA, [1]) to show that the most effec-
tive lighting patterns for the data acquisition process are the eigen-
vectors of the covariance matrix of the SRFs, corresponding to the
largest eigenvalues. In addition, we show that for typical SRFs,
especially when the objects have Lambertian surfaces, DCT-based
lighting patterns perform as well as the optimal PCA-based lighting
patterns. We compare SRF estimation performance of the statisti-
cal approach with traditional IBL techniques. Experimental results
show that the statistical approach can achieve better performance
with fewer basis images.

1. INTRODUCTION

Image-based relighting (IBL) represents a class of techniques that
synthesize images of the scene under novel lighting conditions,
given a set of basis images. IBL has a great advantage that prior
knowledge of object geometry in the scene is not needed for re-
lighting. IBL is applied many applications to such as realistic vi-
sualization of the real objects/scenes in a virtual environment and
movie special effects.

Prior work for IBL has been done by reconstructing a 2D light
mapping function for each pixel of an image, such as the plenoptic
illumination function [2], a reflected irradiance field [3], an envi-
ronment matte [4, 5], or a reflectance field [6]. These techniques are
different in representation but identical in concept. In this paper, we
define a function for each pixel and call it the Surface Reflectance
Function (SRF); the SRF is a weighting function that represents
the contributions from point light sources to individual pixel on the
image plane (Figure 1).

Nimeroff et al. [7] explained the concept of the illumination
as the linear combination of weighted basis images lit by steerable
functions. Environment matting, extension to relighting applica-
tions, attempted to design lighting patterns to obtain the most effi-
cient basis images for relighting. Zongker et al. [4] introduced an
approach to estimating an environment matte of specular and trans-
parent objects using basis images taken with Gray-code lighting
patterns. Chuang et al. [8] extended this [4] technique for higher
accuracy and real-time capturing. Chuang et al. [8] use differently

Fig. 1. The SRF model

oriented Gaussian stripe patterns instead of Gray-code patterns and
estimate matte parameters assuming that an environment matte is
a Gaussian function. Chuang et al. [8] also provided a method to
extract an environment matte from single basis image under certain
scene constraints. Peers et al. [5] improved the efficiency of ac-
quiring an environment matte of a scene by using wavelet lighting
patterns. They measured the importance value of an applied pat-
tern by taking the norm of the corresponding image. By learning
from previously recorded images, they could make a decision of the
most important lighting patterns among wavelets. Our work differs
from Peer et al. [5] in the sense that we design the lighting pat-
terns based on data driven statistics of SRFs. Peer et al. [5] showed
that smartly chosen lighting patterns, wavelet basis functions, im-
proved the accuracy of estimating an environment matte. However,
our proposed algorithm to estimate a SRF uses much fewer basis
images than [4, 8, 5].

The main contribution of our work is to show that data driven
statistics can significantly improve the efficiency of relighting with
highly satisfying visual quality. All procedure of proposed method
is described in Figure 2.

Our proposed algorithm has two stages; a training stage and
a testing stage. First, for the training, we collect true SRF statis-
tics from many synthetic images categorized by surface properties
(Lambertian, specular) by ray tracer (POV-RAY) and perform PCA
[1] on the SRFs (Figure 2.(1)). PCA results show that SRFs are a
highly correlated data set so that only a few eigenvectors dominate
the energy distribution of the SRF. Based on this observation, we
propose a method to design lighting patterns, to be the eigenvectors
of the covariance matrix of the SRFs.

Second, for the testing, designed lighting patterns from the
training stage (Figure 2.(1)) are applied to acquire basis images.
Basis images are used to synthesize relit images with novel light-
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Fig. 2. Flow of proposed algorithm

ing patterns (Figure 2.(2)).

In this paper, we show the surface properties effects on the data
distribution of SRFs based on the PCA results. It is important to
note that the SRFs can be modelled as an AR(1) process with a
high correlation parameter so that the PCA basis functions can be
replaced by DCT basis functions [9]. Especially SRFs from Lam-
bertian surface objects fit better into an AR(1) model than SRFs
from Specular surface objects. We can see that DCT-based lighting
patterns provide better performance for Lambertian surface objects
than Specular surface objects in the performance comparison (Fig-
ure 5).

In the following section, we explain our algorithm for perform-
ing the reconstruction of SRFs from basis images and relighting
using reconstructed SRFs (Section 2, Figure 2.(2)). Section 3 con-
tains practical implementation issues. As a conclusion, we com-
pare the performance of our reconstructed SRFs with other litera-
ture [4, 8, 5] and present the relit images using reconstructed SRFs
and images of same object with real lighting together (Section 4).

1.1. Related Work

There are many related IBL work that studied a sampling and com-
pression [2, 3, 10] of SRF. Lin et al. [3] introduced the reflected
irradiance field and solved the minimum sampling problem of the
reflected irradiance field. Wong [2] extracted the lighting factor
from the plenoptic function and named it the plenoptic illumina-
tion function. Wong [2] discussed about the compression issue of
plenoptic illumination function. Ho et al. [10] proposed the com-
pression algorithm for IBL, after acquiring complete SRFs data set,
based on PCA [1].

2. ALGORITHM DESCRIPTION

In this section, we define the illumination of a pixel on the im-
age plane with the rendering equation and develop a mathematical
framework to solve a SRF. A SRF is defined as a weighting func-
tion from light sources to the radiance value. Therefore, the radi-
ance value reflected by the surface is the inner product value of a
SRF and a lighting pattern [4, 8, 5, 7, 3, 6, 2].

I(m, n) =

P∑

p=1

Q∑

q=1

Fm,n(p, q)L(p, q) (1)

p, q: The index of the light plane, 1 ≤ p ≤ P, 1 ≤ q ≤ Q
m, n: The index of the image plane, 1 ≤ n ≤ N , 1 ≤ m ≤ M
I(m, n): Radiance value at (m, n) pixel where Lin is a corresponding
lighting pattern
Fm,n: The SRF for a pixel (m, n),0 ≤ Fm,n ≤ 1
L(p, q): Incoming radiance at (p, q) from the light plane

We can cascade elements of a SRF function and a lighting pattern
into vectors so that the rendering equation turns into Equation 2.

I(m, n) = FT L (2)

F is a PQ×1 vector and Lin is a PQ×1 vector. Our goal is to
find F, a SRF. Assuming that F is a random vector and a statistics
of F are given, we can obtain most representative basis functions
of F using PCA [1]. Therefore, F can be decomposed by the linear
combination of basis functions multiplied by a set of coefficients
(Equation 3).

F = c1e1 + c2e2 + ... + cP QeP Q + m (3)

ek: kth basis function
ck: kth coefficient corresponding to kth basis function
m: A mean vector from statistics

In this paper, we set P = Q = 64. From the PCA of the train-
ing data set (Figure 2. (1)), we observe that only a few basis func-
tions dominate most of the energy distribution of the SRFs (Figure
3).

Fig. 3. Eigenvalues of the covariance matrix of SRFs

From the Lambertian set of surface objects, we find that 99.14%
of energy is preserved within the first six eigenvectors out of all
eigenvectors. For the specular set, 70% of energy stays within the
first six eigenvectors and 90% within the first forty three eigenvec-
tors. Therefore, F can be approximated by

F̃ ≈ c1e1 + c2e2 + ... + cKeK + m,K � PQ (4)
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Fig. 4. First six designed lighting patterns

Therefore, our goal becomes the signal reconstruction using a min-
imum number of basis functions. To solve F, we substitute Lin in
Equation 2 with ek.

Ik(m, n) = (c1e1 + ... + ckek + ... + cKeK + m)T ek

= ck + mT ek (5)

Note that basis functions are orthogonal to each other and they have
a unit norm. From Equation 5, a coefficient, ck, is simply calculated
from a radiance value at pixel (m, n) if a corresponding basis func-
tion ek is applied as a lighting pattern. In order to reconstruct F
without loss, we will need PQ number of basis functions. How-
ever, PQ is typically a numerous number, which is 4096 in this
paper. We will select a few basis functions, corresponding to the
largest eigenvalues, as lighting patterns to obtain the basis images
and show the relighting results of the synthetic scenes in section 4.
Six eigenvectors corresponding to the six largest eigenvalues and
a mean vector from each set of statistics are presented in Figure 4
(1), (2), (3). If we collect enough data from many different objects,
we obtain a constant mean vector from PCA [1] as shown in Figure
4 (2), 4 (3). The first six DCT basis functions are shown in Fig-
ure 4 (1). From Figure 4, we can observe that the basis functions
from the Lambertian set are patterns with less contrast than the ba-
sis functions from the specular set of objects. This is as expected
because the SRFs from the Lambertian set have a wider and flatter
characteristics than the SRFs from the specular set.

Equation 5 shows the way to calculate coefficients correspond-
ing to the basis functions. We apply calculated coefficients from
Equation 5 to Equation 4 to obtain the reconstructed SRFs. Re-
lighting a pixel is done by taking inner product of SRF with a novel
lighting pattern as shown in Equation 2.

3. IMPLEMENTATION DETAILS

3.1. Displaying Lighting Patterns

In section 2, we design the optimal lighting patterns as basis func-
tions of the covariance matrix of SRFs. To apply them as lighting
patterns, we have to fit them into the range of an image. Since de-
rived lighting patterns contain negative values and have a unit norm,
it is necessary to scale and shift a basis function by following oper-
ation.

Lk =
255

S1
(ek + |min(E)|1) (6)

k is the index of the basis, ek is a kth basis function, E is a ba-
sis matrix [e1e2...eK ], Lin,k is the kth lighting pattern, 1 is a one

vector and S1 is a constant value as |max(E)|+ |min(E)|. Equa-
tion 6 describes the way to scale and shift a basis in order to make
a pattern.

3.2. The Reconstruction of SRFs

In this section, we present the way to calculate the coefficients, ck,
to reconstruct the SRF.

ck =
S1

255
Ik(m, n) − ek

T m − |min(E)|FT 1 (7)

FT 1 in Equation 7 is Igray(m,n)

128
, where Igray(m, n) is a pixel

value captured with the solid gray lighting pattern.

4. EXPERIMENT RESULTS

4.1. The Performance of SRFs Reconstruction

The proposed algorithm is compared with other relighting algo-
rithms, which use an environment matte [4, 8, 5]. We apply a DCT-
based approach and a PCA-based approach, and evaluate the per-
formance. Note that training objects to create PCA basis functions
and testing objects are different except the surface properties. In
Figure 5 (1), we generate the SRFs reconstruction error curve using
ten different diffused objects by increasing the number of lighting
patterns for our algorithm and method [5, 8]. Figure 5 (2) shows
the performance between our proposed methods and [5, 4] when
ten different specular objects are used as objects.

(1) Lambertian objects

(2) Specular objects

Fig. 5. Comparison with another relighting algorithm
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From Figure 5, our proposed methods outperform others [4, 8,
5]. The range of SRFs is between zero and one. Thus, although
numerically the mean square error looks small, it considerably af-
fects on the quality of relighting. From the result shown in Figure
5, a DCT-based approach fits better for Lambertian scene objects.
From the signal processing literature [9], if the signal is an AR(1)
process and a model parameter, ρ, of an AR(1) model is close to
1, the optimal basis functions for the signal are DCT basis func-
tions. From this fact, we fit SRFs into an AR(1) and verify whether
a model parameter, ρ, is close to 1 or not. We check the signifi-
cant level of the modified Li-McLeod portmanteau (LMP) statistic
[11]. As a results, ρ estimated from Lambertain scene objects is
0.91 ± 0.11 with 95% confidence intervals and ρ estimated from
Specular scene objects is 0.83 ± 0.24 with 95% confidence inter-
vals. It shows that SRFs from Lambertain objects fit better for an
AR(1) process and, therefore, a DCT-based approach fits better for
Lambertain objects. Training data set to estimate an AR(1) model
parameter are equivalent to training data set in Figure 2 (1).

4.2. Relit images

Relit images are presented in Figures 6 and 7. If the scene is the
Lambertian, our algorithm can provide very good quality of relit
images using only six basis images. For the specular scene, it is
necessary to use more basis images corresponding to high order ba-
sis functions than for the Lambertian objects since SRFs for spec-
ular objects are sharper and narrower in space than SRFs of Lam-
bertian objects. If the difference map in Figures 6 and 7 is close to
the gray color, a corresponding image is close to the ground truth.
Figure 6 shows that our method can generate better quality of re-
lit images than [5], even though we apply fewer patterns, six, in
comparison to [5] where 15 lighting patterns are applied. In Figure
7, we fix the number of patterns to be 15 for both algorithms and
compare the quality of the relit images. We can see that relit images
from a PCA-based algorithm are significantly closer to the ground
truth than [5]. From relit images, we can also see that our algorithm
extends relighting to larger images, 480×360 than training images,
64 × 64.

Fig. 6. (1)An object under real lighting(ground truth), (2)A relit
image by our proposed method using six images, (3)A relight im-
age by [6] using fifteen images, (4)The difference map between (1)
and (2), (5)The difference map between (1) and (3)

5. CONCLUSION

In this paper, we introduce a statistical approach to reconstructing
SRFs. Statistical analysis of SRFs provides optimal lighting pat-
terns as simply the eigenvectors of the covariance matrix of the

Fig. 7. (1)An object under real lighting(ground truth), (2)A relit
image by our proposed method using fifteen images, (3)A relit im-
age by [6] using fifteen images, (4)The difference map between (1)
and (2), (5)The difference map between (1) and (3)

SRFs. Using optimal patterns, we are able to reconstruct SRFs us-
ing much fewer patterns with better performance than conventional
relighting approaches.
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