
PROGRESSIVE STREAMING OF TEXTURED 3D MODELS OVER
BANDWIDTH-LIMITED CHANNELS

Dihong Tian and Ghassan AlRegib

Center for Signal and Image Processing
Georgia Institute of Technology
{dhtian,gregib}@ece.gatech.edu

ABSTRACT

The bitstream of a progressively encoded textured model
consists of multiple refinement layers. Decoding each layer
produces a model with a simplified mesh and a resolution-
reduced texture. The authors in [4] proposed a quality mea-
sure that captures the visual fidelity of the multi-resolution
textured models. Based on the quality measure, in this pa-
per, we consider the problem of streaming progressively en-
coded textured models over a bandwidth-limited channel.
We develop a bit-allocation algorithm that optimally packe-
tizes the source bits in every transmitted data unit such that
the perceptual quality of the model displayed on the client’s
screen is maximized. The experimental results confirm the
effectiveness of the proposed bit-allocation algorithm.

1. INTRODUCTION

A textured 3D model consists of a geometric mesh param-
eterized by a texture such as a 2D image, which adds re-
alism or surface detail to the geometry. The mesh and the
texture can be progressively compressed to generate multi-
resolution representations [1, 2], and further provide multi-
ple levels-of-detail (LOD) of the textured model [3, 4]. Ev-
ery LOD is composed of a simplified mesh and a resolution-
reduced texture. Progressive compression facilitates not only
the storage of the model in a memory-limited device, but
also the transmission of the model over a bandwidth-limited
channel, as depicted in Figure 1. The coarsest pair of mesh
and texture is first transmitted to quickly start the display
of the model on the client’s screen. Then, the enhancement
data for both the mesh and the texture is delivered to gradu-
ally refine the displayed model. Frequently, the refinement
process is prone to be terminated by the client before all
the enhancement data is downloaded, because 3D models
are typically presented by large data sets while the channel
bandwidth is limited. In such cases, delivery of the full-
resolution model is not of major concern, but the clients de-
sire to maintain the best approximated model with currently

Thanks to Peter Lindstrom for providing the test models.

received data at any instant before the refinement process is
possibly terminated.

� � � � � � � � �

� � �

� � 	
 � � �

 Mesh Texture

Data unit

Bit-rate constrained

channel

Mesh

data

Texture

data

ClientServer

Fig. 1. An illustration of the scenario under consideration.

This paper addresses the above challenge. More explic-
itly, for a progressively encoded textured model, assuming
that the coarsest representation has been decoded and dis-
played, we study under the bit-rate constraint of the chan-
nel, how the enhancement data should be packetized so that
decoding next data unit increases the visual quality of the
displayed model to the maximum extent.

To provide a solution, we propose a bit-allocation algo-
rithm based on a quality measure that properly predicts the
visual fidelity of different LODs for a progressively encoded
textured model [4]. Under the bit constraint on every data
unit, the proposed algorithm searches for the optimal distri-
bution of the bits between mesh and texture data and pack-
etizes the data units accordingly, thus providing the maxi-
mum quality increment. The algorithm has a linear com-
putation complexity, and the experimental results show that
the proposed algorithm outperforms the heuristical methods
both objectively and subjectively.

The rest of the paper is organized as follows. Section 2
explains the progressive compression method. Section 3 in-
troduces the objective measure used to evaluate the visual
quality of the textured models with different resolutions. In
Section 4, we present the bit-allocation algorithm based on
the quality measure. Empirical comparison of the proposed
algorithm with several heuristical methods are presented in
Section 5 while Section 6 concludes the paper.

II - 10890-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

2. PROGRESSIVE COMPRESSION

In this section, the progressive compression methods for
both the geometry and the texture are summarized. There
are several methods available to code textures and we do not
plan to devote effort toward developing new ones. Instead,
in the paper we limit the texture to 2D images, and work
with published image compression algorithms. Specifically,
we adopt the wavelet-based encoder known as SPIHT (Set
Partitioning in Hierarchical Trees) [2] to encode the texture
image into a progressive bitstream.

Mesh compression is a more complex process as it has
the geometric vertices, the edges, and the texture coordi-
nates that parameterize the mesh surface to the texture plane.
Generally, a progressive mesh is generated by successively
performing edge-collapse operations in the order of increas-
ing geometric error [1]. On the decoding side, an inverse
operation called vertex-split is conducted to recover the sim-
plified mesh.

The mesh compression algorithm implemented in the
paper similarly follows that in [5] while having two major
differences: (i) The cost of an edge collapse is measured by
the texture deviation [6], i.e., the maximum distance from
points on the simplified mesh to their correspondents on the
input mesh with the same texture coordinates; (ii) Each ver-
tex of the mesh is treated as a vector V ∈ R

5: three spatial
coordinates and two texture coordinates. We then compress
the edge-collapses using vertex prediction followed by en-
tropy coding for the prediction error [5]. For each edge-
collapse operation, five variable length codewords (VLC)
are appended after the collapse status, the split direction,
and the cut edges1 are respectively coded.

3. QUALITY MEASURE

The aforementioned algorithms encode the textured model
into a base mesh with a number of edge-collapses that re-
fine the base mesh to higher levels-of-detail, and similarly
a multi-resolution representation for the texture. Mapping a
lower-resolution texture to a simplified mesh gives an ap-
proximated representation of the original textured model
with certain distortion. It is crucial to properly measure
such distortion so as to reflect the visual difference of the
displayed models.

An effective computational measure has been proposed
in [4] where the quality degradation incurred by the sim-
plified mesh and the lower-resolution texture are combined
through an equalization factor. Mathematically, if the tex-
tured model is composed of a simplified mesh, Mi, and a

1collapse status: one-bit flag specifying whether a vertex is to be split;
split direction: one-bit flag specifying the vertex-split direction;

cut edges:

⌈
log2

(
e

2

)⌉
bits specifying the two cut edges among the

e incident edges for a vertex that needs to be split.

4804 faces, 0.30 bits/pixel
Q = 0.8094

3744 faces, 0.05 bits/pixel
Q = 0.4664

4804 faces, 0.30 bits/pixel
Q = 0.8960

3744 faces, 0.05 bits/pixel
Q = 0.8079

Fig. 2. Captured views of the MAP-SPHERE (λ = 0.5269)
and the MARBLE-BALL (λ = 0.9127) models.

lower-resolution texture Tj , then the quality of the approxi-
mated model is given by

Q(Mi, Tj) = λQG(Mi) + (1 − λ)QT (Tj), (1)

where λ ∈ [0, 1] is the equalization factor, and QG , QT are
computed using errors measured in the mesh and texture
compression processes, respectively:

QG(Mi) = norm[log10(1 −
MSD(Mi)

L2
)], (2)

QT (Tj) = norm[log10(1 −
MSE(Tj)

2552
)]. (3)

L in (2) is the diagonal of the bounding box of the mesh;
MSD is the mean squared texture deviation over all col-
lapsed edges, and MSE is the mean squared pixel error for
the texture image. Function norm[·] is defined as a normal-
ization operator that normalizes the scales of QG and QT

into [0, 1], respectively2. Conceptually, (2) and (3) quantify
the quality of the coarser mesh and the lower-resolution tex-
ture in their own domains, and (1) measures the visual qual-
ity of the textured model by accounting for the inter-effect
of mesh and texture through the factor λ. Depending on the
features of the mesh geometry and the mapped texture, the
equalization factor for a particular model is estimated using
error samples measured in the rendering space. Because of
the space limitation, we skip the details of the algorithm.
Interested readers are referred to [4] for further details. As
an example, Figure 2 presents sampled mesh and texture
pairs of the MAP-SPHERE and the MARBLE-BALL models.

2After normalization, the lowest resolution mesh (or texture) corre-
sponds to QG (or QT) = 0, and the full resolution version is measured
as QG (or QT) = 1.

II - 1090

➡ ➡

The quality measures are calculated using (1) with the cor-
responding values of λ where the larger the value of λ the
more fidelity information of the model is conveyed by the
mesh geometry and vice versa.

4. THE BIT-ALLOCATION ALGORITHM

Recall the scenario demonstrated in Section 1, where the
coarsest version of a textured 3D model is displayed at the
client, and is being progressively refined every time when
a new data unit is decoded. Although the particular size
of the data unit varies among different environments, it is
generally constrained by a maximum data unit (MDU) in a
bit-rate constrained channel. Our objective is to optimally
packetize the size-limited data units so that the greatest in-
crement of model quality is obtained at each instant when
the model is refined. In the remainder of this section, we
present a solution to such a process based on the quality
measure introduced in Section 3.

We assume in general that the size of MDU is K bits.
Also, we use (χ

(i)
G

, χ
(i)
T

) to denote the data bits that have
been decoded by the client for the mesh and the texture, re-
spectively, after the i-th refinement. Specifically, (χ(0)

G
, χ

(0)
T

)
represents the initial model that has been viewed by the
client. The bit allocation solution for the (i + 1)-th refine-
ment is given by
⎧⎨
⎩

(∆χG , ∆χT)opt = arg max
∆χG+∆χT ≤K

Q(χ
(i)
G

+ ∆χG , χ
(i)
T

+ ∆χT ; λ),

(χ
(i+1)
G

, χ
(i+1)
T

) = (χ
(i)
G

, χ
(i)
T

) + (∆χG , ∆χT)opt,

(4)

where Q is the quality measured using (1), and λ is the
equalization factor associated with the particular textured
model. (∆χG ,∆χT)opt denote the numbers of bits for the
mesh and the texture, respectively, according to which a new
data unit will be packetized for next transmission. Starting
from (χ

(0)
G

, χ
(0)
T

), the computation in (4) is repeated until
all the refinement data is transmitted or the transmission is
terminated by the client.

The proposed algorithm in (4) is referred in the paper as
the maximum quality bit-allocation (MxQ-BA) algorithm.
For each decoding opportunity, the optimal bit-allocation
solution of (4) is searched over the solution space. Exhaus-
tive search is not necessary because the quality measure, Q,
has a decoupled structure and is monotone as a function of
the resolutions of mesh and texture. Henceforth, the optimal
operating point can be found on the boundary of the feasible
region determined by the bit-rate constraint (K bits/unit),
which results in linear computation complexity.

In general, the solution space should be constructed by
all possible combinations of a certain number of edge col-
lapses and a portion of enhancement bits of texture. Prac-
tically, it is neither efficient nor necessary to investigate the
problem for every single edge-collapse or few texture bits

as the difference in both the bit-rate and the quality will be
trivial. In our experimental study presented next, we orga-
nize the refinement data of the mesh and the texture into
batches with bit-rate 100 bytes/batch. The size of MDU is
chosen to be 6KB or 8KB. At each transmission opportu-
nity, we decide under the bit constraint how many batches
of the remaining mesh data should be packed into the to-be-
sent data unit and how many batches should be allocated to
the remaining texture data.

5. EXPERIMENTAL RESULTS

We have tested the proposed algorithm on various models
and in this section we report the results for the ZEBRA and
the SALAMANDER models with equalization factors found
to be λz = 0.6276 and λs = 0.8990, respectively.

We first compare the proposed MxQ-BA algorithm with
the simplest heuristics that transmit first all the mesh (tex-
ture) data and then the texture (mesh). These simple heuris-
tics are called M-First and T-First, respectively. For the ZE-
BRA model, Figure 3 plots the quality increments achieved
by each data unit, where the (black) points-curve denotes
the results by MxQ-BA while the (red) triangles-curve and
(green) diamonds-curve denote the results of the heuristics,
respectively. As can be seen from the plots, the MxQ-BA al-
gorithm improves the model quality more quickly than sim-
ply streaming the geometry (texture) data first and then the
other until the delivered model approaches close-original
quality (Q > 0.90). In Figure 3, for example, the qual-
ity obtained by M-First after sending 8 data units is Q =
0.4842 whereas Q = 0.7818 is achieved by MxQ-BA. Sub-
jective comparison of the two models are shown in Figure 4.
It is apparent that the model given by the MxQ-BA algo-
rithm (Figure 4(a)) has higher visual quality than that of
M-First (Figure 4(b)).

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

Index of data unit (MDU = 6KB)

Q
u

a
li

ty
 m

e
a

s
u

re

M-First

T-First

MxQ-BA

Fig. 3. MxQ-BA vs. M-First and T-First heuristics for the
ZEBRA model.

Two more sophisticated heuristical methods are also in-
vestigated and the results are presented in Figure 5. The
Interleaved scheme organizes the mesh and the texture data
in an interleaving fashion. The Half-BA algorithm is a sim-
ple bit-allocation approach that equally distributes bits for
the mesh and the texture within a data unit. As shown in

II - 1091

➡ ➡

(a) MxQ-BA: Q = 0.7818 (b) M-First: Q = 0.4842

Fig. 4. Subjective comparison of MxQ-BA with M-First
after decoding 8 enhancement data units for the ZEBRA.

Figure 5, the proposed MxQ-BA algorithm outperforms the
Half-BA heuristic as well as the Interleaved scheme. The
enhanced performance is more substantial for the SALA-
MANDER model and/or in the cases where the data unit has
larger size limit. This observation is anticipated because
the solution space becomes smaller when the size of data
units decreases, hence lowering the possible gain that can
be achieved by finding the optimal solution. Figure 6 shows
for Figure 5(c) the rendered results of the above methods af-
ter decoding 3 data units, where Figure 6(b-d) correspond-
ing to the models obtained by MxQ-BA, Half-BA and the
Interleaved scheme, respectively. Notice, for example, how
the claws become substantially distorted from Figure 6(b)
to Figure 6(d). These subjective comparison confirms the
effectiveness of the proposed MxQ-BA algorithm.

6. CONCLUSIONS

In this paper, we presented a streaming algorithm for tex-
tured models based on a novel bit-allocation algorithm that
optimally distributes source bits between mesh and texture
so that every size-limited data unit conveys the most infor-
mation of the model fidelity to the client. We solve the op-
timization problem at each transmission opportunity using
boundary analysis, which has linear complexity. The ex-
perimental results show the effectiveness of the proposed
algorithm both objectively and subjectively.

7. REFERENCES

[1] H. Hoppe, “Progressive meshes,” in Proc. of ACM SIG-
GRAPH 1996, pp. 99–108.

[2] A. Said and W. A. Pearlman, “A new, fast, and efficient image
codec based on set partitioning in hierarchical trees,” IEEE
Trans. on Circuits and Systems for Video Tech., vol. 6, no. 3,
pp. 243–250, 1996.

[3] Laurent Balmelli, “Rate-distortion optimal mesh simplifica-
tion for communications,” Ph.D. dissertation No 2260, Ecole
Polytechnique Federale de Lausanne, Switzerland, 2001.

1 4 8 12 16
0.2

0.4

0.6

0.8

1

Index of data unit

Q
ua

lit
y

m
ea

su
re

Interleaved
Half−BA
MxQ−BA

(a) ZEBRA, MDU = 6KB

1 3 6 9 12
0.2

0.4

0.6

0.8

1

Index of data unit

Q
ua

lit
y

m
ea

su
re

Interleaved
Half−BA
MxQ−BA

(b) ZEBRA, MDU = 8KB

1 4 8 12 16
0

0.2

0.4

0.6

0.8

1

Index of data unit

Q
ua

lit
y

m
ea

su
re

Interleaved
Half−BA
MxQ−BA

(c) SALAMANDER, MDU = 6KB

1 3 6 9 12
0

0.2

0.4

0.6

0.8

1

Index of data unit

Q
ua

lit
y

m
ea

su
re

Interleaved
Half−BA
MxQ−BA

(d) SALAMANDER, MDU = 8KB

Fig. 5. Comparison of the MxQ-BA algorithm with the In-
terleaved scheme and the Half-BA heuristic.

Original
(a)

Q = 0.6164
(b)

Q = 0.5057
(c)

Q = 0.4343
(d)

Fig. 6. Sampled views of SALAMANDER model from Fig-
ure 5(c) after decoding 3 enhancement data units.

[4] D.H. Tian and G. AlRegib, “FQM: a fast quality measure for
efficient transmission of textured 3D models,” in Proc. of ACM
Multimedia 2004, pp. 684–691.

[5] R. Pajarola and J. Rossignac, “Compressed progressive
meshes,” IEEE Trans. Visualization and Computer Graphics,
vol. 6, no. 1, pp. 79–93, 2000.

[6] J. Cohen, M. Olano, and D. Manocha, “Appearance-
preserving simplification,” in Proc. of ACM SIGGRAPH 1998,
pp. 115–122.

II - 1092

➡ ➠

