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ABSTRACT

A proposal function determines the random particle support of a
particle filter. When this support is distributed close to the true
target density, filter’s estimation performance increases for a given
number of particles. In this paper, a proposal strategy for joint
state-space tracking using particle filters is given. The state-spaces
are assumed Markovian and not-exact; however, each state-space
is assumed to sufficiently describe the underlying phenomenon.
The joint tracking is achieved by carefully placing the random sup-
port of the joint filter to where the final posterior is likely to lie.
Computer simulations demonstrate improved performance and ro-
bustness of the joint state-space through the proposed strategy.

1. INTRODUCTION

State-space models are mathematical relations used for describing
a system’s evolution and have extensive applications in many prac-
tical problems in control theory, signal processing, and telecom-
munications. Since exact state-space models of real systems are
extremely rare, approximate models are used. Hence, during an-
alytical modelling of some natural phenomena, the emphasis is
usually placed on choosing a minimum set of variables that com-
pletely describe a system’s internal status relevant to the problem
at hand. In this way, satisfactory results can still be achieved de-
spite incomplete modelling of a system due to ignorance or lack of
knowledge [1,2].

Once a system’s state-space is described in a probabilistic fash-
ion, sequential Monté-Carlo methods, also known as particle fil-
ters, can be used to track the state vector as the observations arrive
in sequence. In the filter mechanics, posteriors describing the state
vector are represented by randomly distributed discrete state real-
izations, called particles, along with associated weights. A pro-
posal function determines the internal distribution of the particles
and directly affects the efficiency of the filter. Given the random
particle support, a particle filter can estimate any statistics of the
posterior by proper weighting, and the estimation accuracy can be
improved up to the theoretical bounds by increasing the number of
particles [3,4].

Recently, there is much interest in combining multiple track-
ing algorithms described by different state-spaces with overlap-
ping state parameters. The motivation for joint estimation is ba-
sically two-fold: (i) to improve the performance of the estimates
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by merging different information streams and (ii) to maintain ade-
quate robustness of the estimates in the face of unexpected model
variations or noisy data. For joint state-space estimation problems,
the particle filter is a natural choice because it propagates the prob-
ability density function (pdf) of the state vectors. Hence, it allows
for heuristic combination methods, which may be problem spe-
cific [5], or a general probabilistic framework for combining infor-
mation.

In this paper, a general framework is described for tracking a
single joint state vector by merging two overlapping state-space
models using the particle filter. It should be stressed that combin-
ing two particle filters for different state spaces is different from
formulating one filter that will track them jointly [6]. A proposal
strategy is described that carefully combines the proposal strate-
gies optimal for the individual state-spaces such that the random
support of the particle filter is concentrated where the final poste-
rior of the joint state-space lies. The resulting filter can have better
estimation accuracy with the same number of particles as the indi-
vidual filters.

The joint proposal strategy assumes that the state-space for-
mulations are not exact. If there is an exact relation governing the
system parameters, then a single consistent state space can be for-
mulated easily from the individual state-spaces. Loosely speaking,
each state space locally explains the underlying phenomenon and
the different independent observations can be used to assist the es-
timation in the individual state-spaces. For example, an acoustic
tracker with a constant velocity motion model can assist a visual
tracker using a random-walk model through an occlusion scenario
if the acoustic propagation path from the target is not blocked.

The paper is organized as follows. Section 2 sets up the state
spaces and describes the assumptions in mathematical terms. Sec-
tion 3 provides the derivation of the joint proposal strategy for par-
ticle filters. Computer simulations are given in Sect. 4.

2. STATE-SPACE ASSUMPTIONS

Two state-spaces S1 and S2 described below are used to demon-
strate the framework. The state update and observation functions
of S and S» are assumed to be time-invariant; however, the results
can be generalized to time-varying systems including nuisance pa-
rameters. It is also assumed that the state dimensions are constant
even if the system is time-varying. Define

Si: Tit = |: ,lZitt :l Nqi(xi7t|xi7t—1)

Yijt ~ fz(yzt|l’zt)
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where the observed data in each space is represented by {y; ¢,7 =
1,2} and the overlapping (possibly multi-dimensional) state pa-
rameters are represented by x:. The state transition density func-
tions g;(-|—) are assumed known or, in the general time-varying
case, they can be determined dynamically. The observations are
explained through the density functions f;(-|—). The observation
sets y; are modelled as statistically independent given the state
through conditionally independent observation densities, e.g., one
of them might be the acoustic observations and the other one video.
This assumption is justified in many cases but may be hard to ver-
ify mathematically for a specific problem at hand [6, 7].

To track the joint state vector z; = [x¢, ¥1,¢, ¥2,:] with a par-
ticle filter, the following target posterior should be determined:

p(Tel|Ti1,y1,e,Y2,6) X T (Y1,e, y2,0)me—1(Te), 2)

where 75(-) = p(-|xs). In (2), the Markovian property is implic-
itly assumed on the state-spaces. That is, given the previous state
and the current data observation, the current state distribution does
not depend on the previous state track and the previous observa-
tions.

Equation (2) can calculate the target posterior up to a propor-
tionality constant, where the proportionality is independent from
the current state z:. The first pdf on the right hand side of (2)
is called the joint data-likelihood and can be simplified using the
conditional independence assumption on the observations:

m(yu, y2,t) = fl(yl,t|$1,t)f2(y2,z|$2,t)~ (3)

The last pdf in (2), corresponding to a joint state update, re-
quires a little bit more finesse. State-spaces S and Sz may have
different updates for the common parameter set since they are not
exact. This poses a challenge in terms of formulating the common
state update for z;. Instead of assuming a given analytical form
for the joint state update as in [6], we combine the individual state
update marginal pdfs for the common state parameter by, in effect,
convolving the models as follows:

mi—1(xt) = cp1(xe)” p2(xe) 2 r(xe) “)

where ¢ > 1 is a constant, p;(x:) = p(x¢|s,+—1) is the marginal
density and the probabilities o; fori = 1,2 (3 ;00 = 1) define
an ownership of the underlying phenomenon by the state models;
and r(x¢) is a (uniform/reference) prior in the natural space of
parameter X [8] to account for unexplained observations by the
state models. If we define D as the Kullback-Leibler distance then

D(a(xt)||mt—1(xt)) = —logc+ Z oiD(a(xt)llpi(xt)) ()

where « is the unknown true x: distribution. Hence, D(a||m:—1) <
max;{D(«||p;)}. This implies that (4) minimizes the worst case
divergence from the true distribution [9]. This way, one of the
trackers can assist the other one in this framework.

The ownership probabilities, 0;’s, can be determined by using
an error criteria. For example, one way is to monitor how well
each each partition x; ; in z+ explains the information streams y; ;
through their state-observation equation pair defined by S;, (1).
Then, the respective likelihood functions can be aggregated with
an exponential envelope to solve for the o;’s recursively. In this
case, the target posterior will be dynamically shifting towards the
better self-consistent model while still taking into account the in-
formation coming from the other model, which might be unable
temporarily to explain the temporary data stream.

If one believes that both models explain the underlying pro-
cess equally likely regardless of their self-consistency, one can set
01 = 02 = 1/2 to have the marginal distribution of x: resem-
ble the product of the marginal distributions imposed by both state
spaces. The proposal strategy in this chapter is derived with this
assumption on the ownership probabilities, because, interestingly,
it is possible to show that assuming equal ownership probabilities
along with (4) leads to the following conditional independence re-
lation on the state spaces:

ﬂ't—l(-’rl,t)ﬂ't—l(xQ,t) =q1 ($1,t|$1,t—1)Q2($2,t|$2,t—1) (6)

Equation (6) decouples the partition z; ; distributions in the joint
update for x, and results in the following update equation:

Te—1(ze) = me—1 (V1,6 Y2, xe)me—1(Xe)
Te—1(1,¢]Xe)Te—1 (Y2, xe)me—1(X¢)

_ 7Tt71($1,t)7Tz71($2,t) @)
me—1(Xt)
= 7Tt71(55t) _ q1(l’l,t|1’1,t71)q2(1’2,t|1’2,t)’ where
me—1(xt)
- 1/2
mi—1(xt) {// q1(z1,¢lx1,e—1)d1,eq2(z2,t|w2,t ) dipa
. [ ]
8)

3. PROPOSAL STRATEGY

A proposal function, denoted as g(z¢|x:+—1,y:), determines the
random support for particle candidates to be weighted. Two very
popular choices are (i) the state update g o g;(x+|zt—1), and (ii)
the full posterior g o< f;(y¢|zt)q:(z¢|zi—1). The first one is at-
tractive because of its tractability. The second one performs bet-
ter because it incorporates the latest data while proposing parti-
cles, thereby decreasing the variance of the importance weights
(since, in effect, it directly samples the posterior) [3,4]. Moreover,
it can be approximated for faster particle generation by using local
linearization techniques (see [4]), where the posterior is approxi-
mated by a Gaussian. An example proposal function obtained by
local linearization of the posterior is

9(@elze—1,y0) = N(u(2) + 2, 5(2)),

2@ =@ +E] T, we) =) [e) + ()],
and where [" and ["’ are the gradients and the Hessians of the re-
spective log-likelihood functions. Also, z is judiciously chosen as
the mode of the posterior, which can be calculated. Hence, by ei-
ther way of proposing particles, one can assume that an analytical
relation for g;, defining the support of the actual posterior for each
state space, can be obtained.

Figure 1 describes the proposal strategy used for the joint state
space. It is assumed that each state space has a proposal strategy
described by the analytical functions {g;,7 = 1,2} defined over
the whole state-spaces. Then, the proposal functions of the each
state g; are used to propose particles for the joint space by care-
fully combining the supports of the individual posteriors. First,
marginalize out the parameters v; +:

where ©)

Gi(Xt|Tie—1, Yi,t) =/gi(mi,t|l’i,t—1,yz‘,t)dwi,t- (10)
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Fig. 1. The supports g; for the posterior distribution in each state
space are shown on the axes x: vs. ¥; ;. Particles for the joint state
are generated by first generating x:’s from the combined supports
of the marginal distributions of x;. Parameters ; ; are then sam-
pled from g;, as constrained by x:.

The functions §; describe the random support the for the common
state parameter X, and can be combined in the same way as the
joint state update (4). Hence, the following function

GOt |Te—1, 91,6, y2.6) o [G1 (X 1,0-1, Y1) G2 (X 02,01, y2,0)] 2
11
can be used to generate the candidates xEJ ) for the overlapping

state parameters. Then using XEJ )
i Wi el i1, yi0). and form 27 =[x, {7, 7).

In general, Monté-Carlo simulation methods can be used to
simulate the marginal integrals in this paper [10]. Here, we show
how to calculate the marginal integrals of the state models. Simu-
lation of the other integrals are quite similar. Given XEJ ), draw M
(3)

€]
, one can generate v, from

samples using ¥} ~ g;(x{”, v ¢|wi—1,yi+)". Then,
1L a0 )

/ql(ng)71/}i,t|f'31,t—1)d1/fi,t N

12)

Pseudo-code for the joint strategy is given in Table 1. Fi-
nally, the importance weights for the particles generated by the
joint strategy described in this section can be calculated as follows:

W) o P |1,y y2.) GO |-, Y1, v2)
a1 (0 -1, y10)92 (), gj,2|$2,t71:y2,t).

(13)

4. EXAMPLES

This section demonstrates the proposal strategy with an analyt-
ical example, emphasizing that the joint tracker (called [J) has
less RMS error in tracking when compared to the trackers (also
called S;) formulated using the individual state spaces, and that

1t is actually not necessary to draw the samples directly from

gi(xij ) ,%i,¢|—). An easier distribution function approximating only g;
can be used for simulating the marginalization integral (12).

M m=1 91(X§J>» wi,ﬂ") |T1,6—1,y1,t)

Table 1. Pseudo Code for Joint Proposal Strategy

1. Given the state update ¢; and observation relations f;, deter-
mine analytical relations for the proposal functions g;. It is im-
portant to approximate the true posterior as close as possible
because these approximations are used to define the random
support for the final joint posterior. For this purpose, Gaussian
approximation of the posterior (9) or linearization of the state
equations can be used [4].

2. Determine the support for the common state parameter x: using
(11). The expression for g should be approximated or simulated
to generate candidates X§J>' j = 1,2,...,N where N is the
number of particles.

3. Given ng), (i). calculate the marginal integrals by using (12),
(i). generate ’Z’z{,]t) ~ gi(ng):¢z‘,t|$i,t717yi,t), (iii). form xij) =
X, %Jt),wéjt)] and (iv). calculate the importance weights,

w(@)’s, using (13).

the joint tracker manifest robustness in the common parameter es-

timates even if one of the models diverges. For the analytic ex-

ample, the ownership parameters for the state spaces are fixed to

0; = 1/2,4 = 1,2 and the prior component () in (4) is not used.
Consider the following state-space descriptions

s [y ) [ 4)

. Xt | Xt—1 + ¥t A
s |3

2
1
0
2
SRR EY)

So: Xt NN(Xt—L)\%)
0, N‘N—<tan71 (%) ,a§) (16)

where S is the true state model with a deterministic parameter w.
S1 and S> are the image and acoustic tracker formulations of S.
In this case, the joint state space is included in the state space of
S1. Hence, the objective is to do a better job in tracking x: given
the aggregate observations.

Since the data-likelihood and the state-likelihood functions of
Sy are linear Gaussian, the full posterior can be analytically de-
termined. In this case, the proposal function g; will be the actual
posterior for Sy:

g1(Xe, Yelxe—1,e—1,9) ~ N (pa, 1), a7
where
a4 1 _1 -1
2 2 2
Sp=| T M N il_,_i , (18)
A o5 T AT T A3
/o3 el —3z +
- Yt,1/0 A AT Xt—1 t—1 )
i ! { [ yt,z/U% + —% A% + A—lg ()
1 1 2

(19)

The marginal distribution of x: from S; is calculated using its
state update. The resulting marginal distribution is

p(xelxi—1,%e-1) ~ N (xe-1 + i1, A+ A%) . (20)
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Table 2. RMS errors for x; and ;. Large numbers in the table are
caused by tracking divergence. The underlying model S is closer
to S1 when w is small, whereas it is closer to So when w is large.

| o [T [ Sk | Satx) [ T@o) | Si@y) |
1/500 44.38 80.24 | 6669.5 21.43 24.83
1/50 42.99 101.05 | 1511.7 26.55 27.68
1/5 2357 | 11347 | 48.96 222.59 | 134.21

Moreover, (10), and (17) lead to

91 0¢elxe—1, Ye—1,yt) ~ N (u1(1),21(1,1)). 3]

For Ss, the data-likelihood is given by

Ly = _2%% [et —tan™? (%)}2 22)

The proposal function for Sz, which approximates the full poste-
rior is obtained by the local linearization of the model as follows:

ga(Xelxt—1,0t) = G2(xelxe—1,0:) ~ N (2, 82),  (23)

—1
1 w 2
Yo =|—5 —_ — 24
=5+ () Ag} ’ oo
oy (X, W1 Ctan—(Xe=) L WX
“2‘22{ o2 TWIiga (W tan™ (X7 )*wuxf
(25)
Hence, to generate x:, substitute (21) and (23) into (11) to obtain
§(Xt|Xt717¢tflvyt,0t) NN(/’L7E) (26)
=2 ! + Ly 27
ORI % ’
1 1N\ (1) p2
= =——+ — — . 28
" <21(1,1)+22) <21(1,1)+E2> @9

Given Xij >, (17) can be used to generate 1, as follows

(9 01) ~ N 9+ - (xij)—m(l)) $1(2,2
g1(x” s Yelxe—1,0t) ~ pa( )+w7 1(2,2)

(29)
where p; is the correlation coefficient of Yo.

Three particle filters (J,S51,S2) are implemented each with
100 particles. J uses the joint proposal strategy, whereas S1 and
Sz use (17) and (26) as proposal functions. Each filter also has
a resampling stage, where particles are resampled with replace-
ment according to their probabilities. Simulation parameters are
M =1,)=050 =20 =1X =090 = (1°2
W = 50, and various w’s. The simulation is done for 50 itera-
tions total. Table 2 demonstrates the RMS error averages of the
Monté-Carlo simulation, where model S is simulated 100 times
with different w parameters.

It should be noted that when neither S; nor S» diverges, their
performances are comparable. In those cases, the joint filter has
less than one-fourth of their combined RMS error, because the par-
ticles are not wasted in redundant areas. Table 2 also shows that the
joint filter demonstrates improved performance as well as robust-
ness. Even though one of the models diverges, the joint filter still
does a good job, because it is, in effect, assisted by the presence
of the other built-in model, which can still track the phenomenon.

The filter’s performance may be further improved by implement-
ing the adaptive ownership probabilities. Lastly, the joint tracker’s
robustness vs. time is shown in Fig. 2.

of—=" ]

= - % (true) N
—— Joint Tracker S~

4 ~

-100r| _ _ S2 1

Fig. 2. Example tracking realization with w = 1/50: Even though
the particle filter designed using S is unable to track after t = 35s,
the joint tracker still does a good job since it uses the information
from coming both state-space models.

5. CONCLUSIONS

In this paper, a general proposal strategy is demonstrated for joint
state-space tracking with particle filters. The framework is quite
general and it allows different state-spaces to assist each other in
tracking a common parameter. The framework is demonstrated
using an analytical example that mimics a joint acoustic image
tracker.
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