
KINEMATICS BASED MOTION COMPRESSION FOR HUMAN FIGURE ANIMATION

Shiyu Li, Masahiro Okuda, Shin-ichi Takahashi

Faculty of Environmental Engineering, The University of Kitakyushu, Japan

ABSTRACT

This paper presents a technique for compression of motion data
using an inverse kinematics algorithm. In a motion chain, the
movement of each joint is represented by a series of vector sig-
nals in 3D space. In general, specific types of joints such as end
effectors often require higher precision than other general types
of joints in, for example, CG animation and robot manipulation.
When compressing these motion data, the distortion of parent
joint coming from quantization in turn affects its child joint and
is accumulated to the end effector. To address this problem and
control the movement of the whole body, we propose a predic-
tion method based on the inverse kinematics. Our method
achieves efficient compression with a high compression rate and
high quality of the motion data. By comparing with a conven-
tional prediction we demonstrate the advantage of ours with
some example.

1. INTRODUCTION

Motion capture systems have been widely used in CG amuse-
ment and human motion analysis such as games and athlete train-
ing. To reuse human motion capture data, users need a motion
library to store existing motion data with human like character.
Large motion databases do not accept the uncompressed forms,
since the motion data are huge. Moreover, motion data retrieval
and transmission often require compactly coded motion [3].

The previous methods for animation compression focus on
the reduction of the number of motion samples [5][2] or the size
of database by utilizing wavelet technique to compress each
sample [1][6]. In [1], Ahmed et al. use the discrete wavelet trans-
form to achieve the motion compression. For the motion com-
pression, one should take into account some special joints such
as end effectors which often require higher compressing preci-
sion than other general types of joints due to motion characters.
The previous methods do not handle this. In [6], we propose a
constraint based compression algorithm for motion data with
special characteristics which can be indicated by motion behav-
ior or specified by users. This method combines wavelet trans-
form and forward kinematics to achieve an efficient motion
compression by using adaptive quantization to establish the op-
timal positions of joints.

However, according to the forward kinematics, in a motion
chain, the distortion of a joint which comes from any quantiza-
tion scheme introduces the warp of the position to its child joint.
The distortion of this child joint in turn affects its grand child
joint, and so on. The warp may accumulate to the end-effector
which is usually treated as the most important joint for motion
feature. To reduce the propagation of the warp to the end effector,
we need to minimize the error between actual position and com-
pressed result in lower level of hierarchy. Unfortunately the for-
ward kinematics can not solve the problem perfectly.

On the other hand, to achieve the high compression rate, the
number of data and the magnitude of the values are also impor-
tant issues. A linear prediction has been widely and successfully
applied in compression of time series data. If we can predict
every next frame, we only need to save the first frame and differ-
ence between real value and its prediction. The better the predic-
tions are, the more common corrections we can get and the more
bits we can save. Considering the merit of predicting technique
we prefer to utilize this technique to achieve high coding effi-
ciency.

To control the movement of the whole body, it is common to
use the inverse kinematics. It is presumed that specified joints,
called the end effectors are assigned in target positions from
preceding positions. By position changes of the end effectors one
may get variations of the motion of the entire body using the
inverse kinematics algorithm. Therefore for most joints, when
recovering motion in decoder, we only require a series of small
modifications to the corresponding values. Obviously, the in-
verse kinematics based approach can solve the above problems
and achieve efficient compression of the motion data with a high
compression rate and high quality of the decoded motion.

As the motion sample data, the BVH format [7] is adopted.
Furthermore, we apply a reduced format of two rotation angles to
be compressed instead of Euler angles, which is translated from
the BVH format and gotten in preprocessing of motion data. The
reduced format can improve the compression efficiency further.
Moreover, one can give a closed form of the Jacobian matrix,
which saves computation time. It will be described in the follow-
ing section.

The remainder of the paper is organized as follows. After a
brief description about the transformation from the general mo-
tion format to the two-angle format in section 2, we explain the
inverse kinematics based compression algorithm in section 3.
The motion compression procedure with a predicting technique
is assigned in section 4. And in section 5, we demonstrate the
advantage of our approach with some example motions. Final
section is conclusion.

2. PRELIMINARY

2.1 General Format

In CG application, a human figure is modeled by a hierarchical
chain, in which connections between two neighboring joints are
rigid, for example, the joints of a shoulder and an elbow move,
but the distance between them is not changed. In this framework,
the motion data in 3D space, x, y, z, are converted to a series of
rotations. A motion chain which is hierarchically constructed by
some linked joints has one end that is free to move, which is
called an end effector. The other end of the chain is fixed or de-
fined as an origin of coordinates, and is called a terminator. See
Fig.1. The roots may have multiple trees and end effectors.

II - 10770-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

Kinematics based motion data processing is to handle the motion
chains, such as trunk, upper limbs and lower limbs.

In the motion chain, to calculate the position of a joint we
need to create a rigid transformation matrix by local translation
and rotation information. A rotation matrix R is composed of 3
Euler rotation matrices with respect to X, Y, Z axes [4]. Suppose
a rotation order is YXZ, by concatenating the Euler rotation ma-
trices, we can get R=Rz*Rx*Ry. By applying a matrix T which is a
homogeneous matrix to represent both the translation and the
rotation by one common equation, the position of a joint in
global coordinate pG can be described by pG=T*pL, where pG=[1
pX pY pZ]T, pL is the position of this joint in local coordinate and

pL=[1 px py pz]
T,

�
�

�
�
�

�
=

Rl
T

�������

� 01 , and l is a translation vector[1 lx ly

lz]
T. Once the local transformation of a joint is created, it will be

concatenated with the transformation of its parent, then its grand
parent, and so on. The position of this joint in world coordinate
can be obtained by pworld =Troot*Tgrandparent*Tparent*Tchild*pchild.

2.2 Two rotation angle format

Generally the motion data is described by series of position x, y,
z in three dimensional space, Euler angles, roll-pitch-yaw, or etc.
In a sense of compression efficiency, these formats are verbose,
since we assume the motion chains are expressed by rigid trans-
form and joint positions are described by two values except for
the end effectors. To remove the verbosity, we first convert the
data to a two-angle format.

Suppose the length of a link connecting a child joint and a
parent joint is r, which is gotten by the position offset of the
child joint pchild=[pxchild pychild pzchild]

T.
After a rotation RZXY as order Y, X, Z, the new position of

this child joint in its parent coordinate is
pparent =RZXY*pchild, where pparent=[pXparent pYparent pZparent]

T.
To represent the pparent by two angles:

pXparent = r*sinφ *cosϕ
pYparent = r*sinφ *sinϕ (1)
pZparent = r*cosφ

where φ and ϕ can substitute for three Euler angles to be com-
pressed.

3. INVERSE KINEMATICS BASED ALGORITHM

According to the forward kinematics, in a motion chain, the
transformation of a parent joint causes a change of its child joint
position. The change of this child joint in turn affects its grand
child joint, and so on. Finally the changes are accumulated to the

end effector. See Fig. 2(a). Motion is inherited down the hierar-
chy from the parents to the children. For simplicity, we discuss
two-dimensional case. And the position of the end effector p(x, y)
in two dimensional can be determined

p (x, y) = f(θθθθ) (2)
where θθθθ is a set of rotation angles at each joint (θ1,θ 2,θ 3, …θ n).

In Inverse Kinematics (IK), motion is inherited up the hier-
archy, from the extremities to the root (Fig. 2(b)). The role of the
IK algorithm is to automatically work out how each joint in a
chain should be transformed so that the end effector can reach
the goal. To find the set of the changes of the joint angles which
satisfy a given displacement of the position of the end effector,
we need to solve

θθθθ = f -1 (p(x, y)) (3)
However, there are, in general, an infinite number of solu-

tions of (3). To solve the high redundancy, Jacobian-based
method is utilized. Therefore (2) is written in differential form:

��� Jyxp =),((4)

J is Jacobian matrix and J≡∂f /∂θθθθ.
Then equation (4) can be written by

),(1 yxpJ �� −=� (5)

(5) linearly relates the change of the end effector to the
change of joint angle and is used as the basis in our prediction
algorithm. When ∆p, which is a displacement of end effector
from previous position to current position, is given, the change of
each joint can be determined.

Our IK algorithm consists of the following steps.
1. Calculate the increment of the position of the end effector
from frame i-1, pi-1, to frame i, pi , ∆p= pi - pi-1

2. Calculate Jacobian matrix
J (φ1, ϕ1, φ2, ϕ2, φ3, ϕ3,…, φn, ϕn)

using the angles of last frame
(φ1, ϕ1, φ2, ϕ2, φ3, ϕ3,…, φn, ϕn),

where φj and ϕj are the two-angles in (1). Since
pi (x, y, z) =[f1(φ, ϕ) f2(φ, ϕ) f3(φ)]T,

where f1 (φ, ϕ) = �
=

n

j 1

Lj * sin(φ j) cos(ϕ j),

f2 (φ, ϕ) = �
=

n

j 1

Lj * sin(φ j) sin(ϕ j),

f3 (φ) = �
=

n

j 1

Lj * cos(φ j) by equation (1) and Lj is the

length of link j. Then by (4),][jjJp ϕφ ��=∆ and

J = [∂f1(φ,ϕ) /∂φj ∂f1(φ,ϕ) /∂ϕ j, ∂f2(φ,ϕ) /∂φ j ∂f2(φ,ϕ) /∂ϕ j, ∂f3(φ)
/∂φ j 0],
where, ∂f1(φ,ϕ) /∂φ j = Lj cos(φj) cos(ϕj),

∂f1(φ,ϕ) /∂ϕ j = -Lj sin(φj) sin(ϕj),
∂f2(φ,ϕ) /∂φ j = Lj cos(φj) sin(ϕj),

)(θfPend =

Fig. 2 (a) Forward Kinematics (b) Inverse Kinematics

end
effector

P

1θ
2θ

3θ

)(1
endPf −=θ

end
effector

P

1θ

2θ

3θ

root

terminator

end effector

link

Left limb chain
(thick curve)

Fig. 1 Human Figure

II - 1078

➡ ➡

∂f2(φ,ϕ) /∂ϕ j = Lj sin(φj) cos(ϕj),
∂f3(φ) /∂φ j = -Lj sin(φj)

3. Get the pseudo inverse of J, J+ = JT (JJT)-1, since J is not
always invertible [6]
4. Calculate the value in frame i for φ1, ϕ1, φ2, ϕ2,…φn, ϕn, in
each chain. θθθθ is the vector of angles for each chain and is given
by θθθθi=θθθθi-1+J+∆p

In step2, if the general format, which is composed of rota-
tion angles about X, Y, Z axes, is applied, to calculate the Jaco-
bian matrix, each item almost involves all the related angles.

While in our two-angle format, sinceφ andϕ are calculated
by the product of all the related rotation matrices from current
joint to root joint, using two-angle format, the Jacobian J is given
in a closed form, which saves computation time.

4. CONSTRAINT BASED COMPRESSION WITH
PREDICTION TECHNIQUE

Considering motion characters, we have to assign more bits to
some special joints such as the end effector than other general
types of joints. An adaptive quantization approach preserves
features of the motion greatly. To achieve this, the hierarchical
stepsize for different joints can be implemented in quantization
step.

Meanwhile, since the amount of motion data is considerable,
high compression rate is needed. Prediction based techniques
have been widely and successfully applied in compression of
series of data. If we can predict every next frame, we only have
to save the first frame and the difference between real value and
predicting result. The better the predictions, the more common
corrections we can get and the more bits we can save.

The aforementioned two points characterize our compres-
sion approach properly when comparing with previous works.
Actually, there are no conventional algorithms specialize the
constraints in joints, i.e., precise reconstruction of the end effec-
tors, and achieve efficient compression rate simultaneously.

To predict every next frame, an intuitive method is to utilize
the last frame directly. Taking the difference D between the cur-
rent and last frames may be one of the simplest method. By this
method, we can decode current value θcurrent in decoder using
equation θcurrent =θlast+D. Improving compression rate only de-
pends on stepsize since D is fixed. We have to explore a better
prediction method which can provide the data closer toθcurrent.

The inverse kinematics gives a solution exactly. In our
compression method, an encoder calculates the differences of
position of end effectors between two sequential frames. More
bits are assigned to them to keep the precision of the end effec-
tors in quantization. Then these differences will be sent to de-
coder. Next, both in encoder and decoder, using these differences
and the angles in previous frame we can calculate the change of
rotation angle in each joint by IK (inverse kinematics) algorithm
approximately. Suppose the difference between the value pre-
dicted by IK and the value in last frame is D’ and θIKpredict

=θlast+D’. We need transfer δ = D-D’ to the decoder which may
reconstruct current value θcurrent by θcurrent =θIKpredict+δ. Obvi-
ously, the closer the θIKpredict to θcurrent, the smaller the δ is. In
some cases, θIKpredict almost equals toθcurrent, thereby δ tends to
zero.

This IK algorithm based compression procedure with pre-
diction technique is shown in Fig.3.

5. EXPERIMENTAL

In our experiment we adopt the BVH file format [7]. The BVH
file has two parts, a header section which describes any number
of skeleton hierarchies and the initial pose of the skeleton by
translational offsets of children segments from their parent; and a
data section which contains the position of the root joint and the
rotation information of motion of all joints in each frame. In the
BVH format, the motion is described by a series of the three
rotation matrices with respect to y, x, z axes. We convert them to
the two curves representing the rotations byφ and ϕ in formula
(1), and then compress them.

To evaluate the efficiency, we calculate the error of position
of joint i between the original motion and the compressed one by
equation:

�
=

−=
fN

j

i

cj

i

oj

f

i PP
N

E
1

21

and the error of all joints in all frames by:

�
=

=
jN

i

i

j

E
N

E
1

1

where Pi
oj and Pi

cj are 3D position of joint i in frame j of
original and compressed motions respectively in world coordi-
nate. And Nf is the number of frames, while Nj is the number of
total joints.

To compare our IK based prediction (IKBP) method with
simply prediction by last frame (SPBLF), we give the RD curves
of walking motion and ballet motion in Fig.4. In this figure, as
the increment of entropy, the change of error of our method is
smaller than the simple predicting method. It demonstrates that
our proposed algorithm can get the more common corrections
and save more bits than the general algorithm.

We also show the different error of position of each joint in
a limb chain corresponding to different entropy value in Table.1
to demonstrate the advantage of our approach.

(a) Encoder

C
onvertalljoints

to
tw

o-angle
form

at

General
other joints

Entropy
coding

Calculate
position

Simple
prediction quantization

Entropy
coding

decoding
Compressed
position

Prediction
by IK

Calculate
prediction
error

quantization

Compressed
angles

decoding

End
effectors

C
onvertalljoints

to
originalangle

form
at

Entropy
decoding

Entropy
decoding

Bits of general
other joints

dequantization
Calculate
position

Prediction
by IK

Compressed
angles

Two-angle
format

Two-angle
format

Bits of end
effectors

(b) Decoder

dequantization

Fig. 3 Compression flow chart

II - 1079

➡ ➡

The original data size of walking motion is 314kb. The
number of joints is 23 and these joints belong to 5 motion chains
respectively. The number of frames is 580 and the frame sam-
pling rate is 0.00833s. Fig.5 shows series of samplings of the
original walking motion and the decoded one correspondingly
when entropy is 0.6679, where the serial numbers of the sam-
pling frames are 1, 13, 23, 36, 46, 71, 83, 97, 109 and 128. These
series of samplings present a period of the walking motion and it
is difficult to discovery the difference between the original mo-
tion and the decoded one when entropy is larger than 1.1206.
Another applied motion is the ballet motion with 141kb original
size. There are 20 joints which belong to 5 motion chains respec-
tively in ballet motion. The number of frames is 388 and the
frame sampling rate is 0.04s.

6. CONCLUSTION

The compression of captured motion data is an important issue in
motion storing, retrieval, editing and transmitting. For the motion
compression, some specific types of joints such as end effectors
often require higher precision than other general types of joints.

Inverse kinematics is a common approach to control the
movement of the whole body. The position of end effector can be
specified in a target position from preceding position. By posi-
tion changes of the end effectors we may get variations of the
motion of the entire body. The inverse kinematics, on the other
hand, supports a prediction based compression. To predict mo-
tion in decoder, we only need to save the first frame and a series
of small difference between real value and prediction gotten by
the variations of the positions of the end effectors. Therefore, it
can solve the problems of specific joints and achieve efficient
compression of the motion data.

We applied the inverse kinematics based compression in our
reduced two-angle format. Some experiment results of example
motions demonstrate the advantage of our method compared
with conventional method.

7. REFERENCES

[1] A. Ahmed, A. Hilton and F.Mokhtarian “Adaptive compres-
sion of human animation data,” In Eurographics 2002, Saar-
brucken, Germany, 2002.

[2] Etou, H., Okada, Y. and Niijma, K. “Feature Preserving
Motion Compression based on Hierarchical Curve Simplifica-
tion”, Proc. of ICME2004, Taipei, Taiwan, June 2004.
[3] Bruderlin, A., and Williams, L, “Motion signal processing,”
Proceedings of SIGGRAPH 95. ComputerGraphics, pp. 97—104,
Aug. 1995.
[4] Vladimir M. Zatsiorsky, Kinematics of Human motion,
Department of Kinesiology, The Pennsylvania State University,
1998.
[5] Lim, D. Thalmann , “Key-posture Extraction out of Human
Motion Data by Curve Simplification”, Proc. EMBC2001, 23rd
Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, vol.2, pp.1167-1169, 2001.
[6] Shiyu Li, Masahiro Okuda, Shin-ichi Takahashi, “Hierar-
chical Human Motion Compression with Constraints on Frames”,
47th MWSCAS, Hiroshima, Japan, pp. I-253- I-256, Jul. 2004.
[7] M. Meredith and S.Maddock, “Motion capture file formats
explained,” Department of Computer Science, University of
Sheffielf.

Walk

0

1
2

3
4

5
6

7

0.3259 0.8656 1.634 2.5528 3.5115 6.4833

Entropy

E
rr

or
%

in
po

si
ti

on
of

jo
in

ts

IKBP

SPBLF

Ballet

0

5

10

15

20

25

0.7022 1.3503 2.1621 3.0897 4.0394 6.8813

Entropy

E
rr

or
%

in
po

si
ti

on
of

jo
in

ts

IKBP

SPBLF

Fig. 4 RD curve

Original motion

Decoded motion

Fig.5 Series of samplings of walking motion

Table1. Error of Position of Each Joint in Limb Chain

Error
Method Entropy Root

Joint
Child
Joint

Grandchild
Joint

End
effector

IKBP 0.6697 0.125 0.224 0.329 0.371

SPBLF 0.7269 1.645 2.717 6.468 6.338

IKBP 1.3413 0.076 0.139 0.204 0.229

SPBLF 1.3673 0.887 1.506 4.827 4.699

IKBP 2.3130 0.062 0.116 0.164 0.187

SPBLF 2.2147 1.270 1.821 1.085 1.470

IKBP 3.0346 0.038 0.069 0.102 0.117

SPBLF 3.1294 0.582 0.863 0.814 0.913

IKBP 3.9400 0.018 0.035 0.053 0.064

SPBLF 4.0860 0.542 0.666 0.637 0.609

II - 1080

➡ ➠

