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ABSTRACT

Audio content analysis is helpful in many multimedia applica-
tions. In this paper, we present a unified framework for content
analysis of composite audio. The framework is designed to
extract relevant information from different available audio
modalities and to discover high-level semantics conveyed by the
data. We also demonstrate an implementation of the proposed
framework for scenes and events detection in various TV shows
and movies, in which key audio effects are first extracted as mid-
level representation and then Bayesian Network is used for high-
level semantics inference. Experiments on 12-hour audio data
indicate that the proposed framework has a satisfying
performance.

1. INTRODUCTION

Nowadays, more and more digital audio data appear in various
multimedia databases, either stand-alone (e.g. music, radio
broadcasts) or combined with other media (e.g. visual and/or
textual) into multimedia documents. However, most of the audio
data are not indexed, which makes the contained information
difficult or inconvenient to reuse. Building a system for audio
content indexing is likely to facilitate the management of audio
data and support various multimedia applications where this data
plays a role.

To be able to index audio data, semantic information needs
to be extracted from data. Most existing audio indexing systems
focus on speech signals. This is, first, because reliable speech
recognition tools are available, using which audio signals can be
transcribed into the text domain; and second, because advanced
algorithms for text information analysis and retrieval can then be
applied to reveal the topic structure and items of a spoken audio
document. Fewer solutions have been proposed so far addressing
non-speech and composite audio signals. Saunders [1] presents
a speech/music classifier based on simple features such as zero-
crossing rate and short-time energy for radio broadcast. Lu et al.
[2][3] present schemes to classify audio signals into four classes,
including speech, music, noise, and silence, by using heuristic
rules or SVM. Wold et al. [4] propose an approach to detecting
more specific audio categories, such as animal sounds, bell,
crowds, laughter, machine and musical instruments. The scope
of existing non-speech indexing approaches also includes
methods for extracting audio keywords [5] or highlight sound
effects [6] from audio signals.

To be able to extract more semantic information from a
multimodal data stream, research has been reported on audio
scene classification and highlight detection to support video
content analysis. For example, Liu et al. [7] study the problem

of classifying TV broadcast into five different categories: news,
commercial, weather forecast, basketball game, and football
game by using a 3-layer feed forward neural network classifier.
In sports video analysis [8], highlight events are detected based
on special audio effects like cheering, ball-hit, and whistling;
while in film indexing [9] sounds like car-braking, siren, gun-
shot, and explosion are used to identify violent scenes in action
movies.

Compared to previous approaches on analyzing composite
audio, which are usually heuristic or constrained on a certain
audio type, we develop in this paper a unified framework for
composite audio content analysis applicable to a large variety of
multimedia data streams. The framework is designed to integrate
information from different audio modality and to discover high-
level semantic concepts from mid-level representations instead
of from low-level features directly. We also demonstrate the
effectiveness of the proposed approach on a broad set of test
videos including entertainment TV shows and action/war movies.

The rest of the paper is organized as follows. Section 2
presents the unified framework for composite audio analysis.
Section 3 demonstrates an implementation of the proposed
framework and the corresponding modules. Evaluation and
discussion are given in Section 4. Section 5 concludes the paper.

2. THE UNIFIED FRAMEWORK

Our proposed unified framework for content-based analysis of
composite audio is illustrated in Fig. 1. Here, the attribute
“unified” refers to the ability to deal with an arbitrary audio
source, and thus makes the framework suitable for various
applications.

Fig. 1. A unified framework for content-based audio analysis

The framework actually represents the generic process of
audio content understanding, from low-level features, via mid-
level content representation, to high-level semantics. It consists
of five main modules: audio representation, audio classification,
key-elements spotting, logical unit segmentation, and semantic
mining. Moreover, prior knowledge can also be integrated in
order to improve the performance of key-elements spotting,
logical unit segmentation and semantic mining.

The basic processing flow of the framework is as follows.
Firstly, in the Audio Representation module, the input audio
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signal is represented by low-level features (including temporal,
spectral or structural features), which should have enough
discrimination capability regarding different audio types. Then,
in Audio Classification module, the audio signal is classified and
temporally segmented into a number of general audio modalities
such as speech, music, and background sounds. Subsequently,
key components, such as a keyword in speech and a key audio
effect of a background sound, are detected from audio signals in
the Key-Elements Spotting module. A key component here is a
mid-level representation of an audio signal and serves to enable
direct links to semantics. As such, it provides the basis for
further semantics discovery. Based on the obtained low-level
and mid-level representations, the audio signal is further
segmented into homogeneous logical units in the module called
Logical Unit Segmentation. A logical unit is a segment which
has a coherent semantic content, such as an event, a scene, a
topic or an episode. Finally, in the Semantic Mining module, the
semantic concept of each logical unit is discovered.

The audio separation module in the dashed block can be
used to spectrally separate different audio modalities from each
other. Thus, together with Audio Classification module where
temporal signal segmentation is performed, a composite audio
signal can be spectrally and temporally separated. As spectral
audio separation can still not be performed reliably on general
acoustic data, we consider in our implementation the temporally
composite audio only. Once reliable algorithms for blind-source
signal separation are available, they can easily be incorporated
into our framework.

3. IMPLEMENTATION

Using the proposed framework we may extract different features,
key elements and target semantics for different applications. In
this section, we demonstrate an implementation of the
framework for detecting scenes or events from entertainment TV
shows and action/war movies. In this particular application we
define five semantic categories that are to be extracted, namely
excitement, humor, pursuit, fight, and air-attack. Each of these
categories can be characterized by a number of representative
audio effects. For example, the category “Excitement” could be
detected based on cheering and applause, while laughter is an
important indication for the “Humor” category. “Pursuit” can
usually be found in action movies and could be detected through
the presence of car-crash and car-braking sounds, sirens,
helicopter sounds, gun-shots and explosions. The categories
“Fight” and “air-attack” often occur in action and war movies.
Scenes of fight mostly contain gun-shots and explosions, while
explosions and sound of planes could be the indications of the
“air-attack” category. Based on the above, ten key audio effects
can be selected to support the detection of the defined high-level
semantic categories: applause, laughter, cheer, car-braking, car-
crash, explosion, gun-shot, helicopter, plane, and siren.
Detailed implementations of each module are explained in the
following.

3.1 Audio Representation

Many audio features have been proposed so far in the context of
content-based audio analysis and have been proved to be
effective in providing the base for interpreting audio signals at
the semantic level [3][4][7]. Building on these previous works,

we choose to extract a number of “traditional” temporal and
spectral low-level features for the application context defined
above.

In the temporal domain, we extract short-time energy (STE)
and zero-crossing rate (ZCR). STE provides a good
representation of the amplitude or the loudness, while ZCR gives
a rough estimation of the frequency content in an audio signal.
Our selected set of spectral features consists of band energy
ratios (BER), brightness, bandwidth and Mel-frequency Cepstral
Coefficients (MFCCs). BER describes the characteristics of
spectral energy distribution. In our experiments, the spectral
domain is equally divided into 8 sub-bands and the energy in
each sub-band is then normalized by the whole spectrum energy.
Brightness and Bandwidth are the first-order and second-order
statistics of the spectrogram respectively. They roughly measure
the timbre quality of a sound. MFCC is a sub-band energy
feature in mel-scale, which gives a more accurate simulation of
human auditory system. As suggested in [2][3], 8-order MFCC
is used in the experiments.

Besides the above features, two new spectral features,
namely sub-band spectral flux and harmonicity prominence, are
also used, based on our previous works on audio representation
[10]. Sub-band spectral flux is used to measure whether there are
salient frequency components in each sub-band, while
harmonicity prominence estimates the harmonic degree of a
sound.

3.2 Audio Classification & Key Element Detection

In this step a composite audio is temporally segmented into
(close-to) mono-modal segments including speech, music or
background noise, and then the key elements are extracted from
the obtained segments. As explained above, the key elements
are the effects serving as indications for the presence of a high-
level semantic concept. Since “speech”, “music” or “noise” can
also be considered a key element in semantics discovery, in our
implementation, audio classification and key effect detection are
implemented together. Besides the “speech”, “music” and
“background sound” label, ten special key audio effects are also
extracted: applause, laughter, cheer, car-braking, car-crash,
explosion, gun-shot, helicopter, plane, and siren.

We employ Hidden Markov Model (HMM) for key audio
effect modeling since HMM provides a natural way for modeling
time varying processes [10], and has been proven to be effective
for audio effect modeling in many approaches proposed before
[6]. Unsupervised k-mean clustering with Bayesian Information
Criterion (BIC) [15] is performed on the training sets to estimate
the HMM states of each key audio effect model,. The results are
listed in Table 1. Here, more states are used than in our previous
work [6], in order to catch a large variety of training samples.
Also, due to a large variety of general audio classes, such as
speech and music, 128 Gaussian mixtures are used for them in
our approach.

Table 1 HMM States for Key Audio Effects Modeling
Key Audio Effects States Key Audio Effects States

applause 8 gun-shot 10
car-braking 9 Helicopter 7
car-crash 9 Laughter 8

cheer 5 Plane 10
explosion 9 Siren 11
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As for the topology of HMM, the most popular topologies
are left-to-right and fully connected. The left-to-right structure
only permits transitions between adjacent states; while fully
connected structure allows transitions between any two states in
the model. In our approach, we use both structures to model key
effects with different properties:
� For key effects with obvious characteristics in their

progress phases, such as car crash and explosion, left-to-
right structure is adopted.

� For key effects without distinct evolution phases such as
applause and cheer, or general audio classes, fully
connected structure is applied.

3.3 Logical Unit Segmentation

Having extracted the key effects from an audio signal, we are
now searching for potential temporal segments which are most
likely characterized by a coherent semantic content. We model
this coherence using auditory contexts, as illustrated in Fig 2.

An auditory context is defined by a number of subsequent
key effects. Two adjacent key effects are assumed to be in the
same context if the time interval between them is sufficiently
short. In the same way, a new context is started if the time
interval between two key effects is larger than a pre-defined
threshold Tm. The threshold Tm can be determined based on the
estimate of the upper limit for the length of human memory
window to perceive a consecutive scene. We set this threshold to
16 seconds, following the discussion in [12]. It is noted that,
with this scheme, two neighboring logical units may have the
same semantic meaning.

mTt >∆

Fig2. Examples of logical unit (auditory context) in audio stream

3.4 Semantic Concept Detection

Each of the detected logical units is now tested for the presence
of the defined five target semantic categories: excitement, humor,
pursuit, fight, and air-attack. To infer high-level semantics from
obtained key effects, most of previous works utilize rule-based
approaches [5] or statistical classification [9]. Although heuristic
inference is straightforward and easy to be applied in practice, it
is laborious to find a proper rule set if the situation is complex.
Also, some rules may be in conflict with others, and some cases
may not be well-covered. For a classification-based approach,
the inference performance highly relies on the completeness and
the size of the training samples. Without a sufficient training
database, positive instance not included in the training set will
usually be misclassified. To solve these disadvantages, Bayesian
Network is used for semantics inference in our framework.

A Bayesian Network [13] is a directed acyclic graphical
model that encodes probabilistic relationships among nodes
which denote random variables related to semantic concepts.
Bayesian Network can handle situations where some data entries
are missing, as well as avoid the over-fitting of training data [13].
Thus, it weakens the influence from the unbalanced training
samples. Furthermore, a Bayesian Network can also integrate

prior knowledge by specifying its graphic structure.
Fig 3 illustrates the graphic topology of a two-layer

Bayesian Network. There are 13 nodes in the bottom layer to
represent ten key audio effects and three general audio classes in
each logical unit. In this way, the information from different
audio modality is roughly integrated. Further, there are 5 nodes
in the top layer, denoting the five predefined semantic categories.
The structure can be manually specified according to the causal
relationships between semantic categories and audio effects.
That is, the children of a category node only include those key
effect nodes which have relationships with this semantic
category. Moreover, the nodes in the top layers are assumed to
be discrete binaries denoting the presence or absence of the
corresponding category; and the nodes in the bottom layer are
continuous-valued with Gaussian distribution. The model
parameters are uniformly initialized, and then the model training
and semantic inference are implemented with the Bayes Net
Toolbox [14].

Semantic Context

Key Audio
Effects ...

...

1F 2F 3F 4F NF5F 1−NF

1S 2S MS3S

Fig. 3 A Bayesian Network for auditory context inference

4. EVALUATION

We evaluated the proposed system on 12 hours of audio
extracted from various video genres, including action/war
movies and entertainment TV shows. Detailed information on
the audio tracks used is listed in Table 2. All audio streams are in
the 16 KHz, 16-bit and mono channel format, and are divided
into frames of 30 ms with 50% overlap for feature extraction. In
total, around 100 training samples are annotated for each key
audio effect, and 5 hours for general audio classes: music,
speech and noise.

Table 2. Description of the test audio data set
Movie/TV Title Genre Duration

Saving Private Ryan war 2:41:41
Enemy at the Gates war 2:11:08

Swordfish action 1:39:17
The Rock action 2:16:35

3rd Rock from the Sun situation comedy 0:30:05
Hollywood Squares TV shows 0:25:43

59th Annual Golden Globe Awards TV shows 2:14:50

We firstly evaluate the performance of key effect detection.
Table 3 lists the precision, recall and F1-measure obtained for
each target key audio effect. It can be seen that most effects are
detected with high recall and precision.

Table 3. Results on audio effect detection
Recall Precision F1

applause 97.66% 91.40% 94.43%
cheer 97.17% 65.84% 78.50%

laughter 99.09% 71.09% 82.79%
car-brake 86.54% 85.64% 86.08%
car-crash 98.17% 69.36% 81.29%
explosion 80.00% 76.04% 77.97%
gun-shot 80.50% 76.83% 78.62%
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helicopter 98.66% 85.01% 91.33%
plane 92.79% 89.05% 90.88%
siren 99.10% 93.05% 95.98%

Then we evaluate the performance of semantics inference.
To obtain a better picture about the performance, three inference
approaches are compared: rule-based approach, SVM-based
approach, and our Bayesian Network-based approach. In our
approach, the heuristic rules are mainly based on the description
in Section 3. The inputs for SVM and Bayesian network are the
duration ratio and confidence of each key audio effect. The
comparison results are listed in Table 4.

Table 4 Comparison among different Inference Engines
regarding their ability to detect the defined semantic concepts

Inference Engine Recall Precision F1
Heuristic Rule-based 84.87% 71.47% 77.60%
SVM-based 77.21% 83.33% 80.15%
Bayesian Network 89.34% 82.37% 85.71%

From Table 4, it can be seen that the heuristic rule-based
method usually results in a high recall but low precision. This is
because the rules are usually set for the target phenomena, so
that the negative samples are often misclassified. Opposed to this,
a SVM-based approach obtains a high precision but low recall,
since it typically cannot detect the instances not included in the
training set. Comparatively, a Bayesian Network can handle
situations where some data entries are missing so that it has both
a high recall and a similarly high precision and shows a better
overall performance than the other two approaches. As shown in
Table 4, the Bayesian Network offers similar precision to SVM
while improve recall by about 12%, and obtains similar recall to
the rule-based approach while improve the precision by about
11%. A confusion matrix of high-level semantic inference based
on Bayesian Network is listed in Table 5

Table 5 Confusion matrix of semantic inference based on BN
excitement humor pursuit fight air-attack

excitement 29 1 0 0 0
humor 2 36 0 1 0
pursuit 0 0 81 10 0
fight 0 0 5 72 0
air attack 0 0 1 1 25

Finally, we also compared the performance of semantic
inference based on low-level features directly and based on mid-
level representations (key audio effects). The mapping between
low-level features and semantics are modeled by GMM with
128-mixtures in our approach. From Table 6 it can be seen the
semantic inference based on key audio effects results in a higher
overall performance.

Table 6. Performance comparison of high-level semantic
inference from key audio effects and from low-level features

From key audio effects From low-level features
Category

Recall Precision Recall Precision
excitement 93.55% 93.55% 78.13% 92.59%
humor 94.74% 92.31% 94.74% 83.72%
pursuit 91.01% 82.65% 85.23% 77.32%
fight 80.90% 72.73% 82.76% 80.90%
air-attack 100% 89.29% 55.56% 93.75%
Average 89.34% 82.37% 82.07% 82.27%

5. CONCLUSION

In this paper, we presented a unified framework for content
analysis of composite audio and demonstrated its
implementation for a specific application. The framework
utilizes the mid-level representation to discover high-level
semantic concepts, with a Bayesian Network based approach. It
can also use the information of multiple audio modalities.
Experiments indicated that the framework has a good flexibility
and a satisfying performance.

We see the possibilities to further improve the proposed
framework mainly by finding better ways of integrating different
audio modalities, and by increasing the robustness of logical unit
segmentation.
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