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ABSTRACT

Digital fingerprinting inserts identification information in the
content to track the usage of digital data and protect content se-
curity. To trace traitors for multimedia over heterogeneous net-
works, this paper studies scalable multimedia fingerprinting sys-
tems in which users receive fingerprinted multimedia of different
quality. We investigate the cost-effective multi-user collusion on
fingerprinting systems and focus on fair collusion attacks in which
colluders share the same risk of being captured. In this paper, we
examine the fairness constraints on collusion when attackers re-
ceive copies of different quality and analyze the performance of
scalable fingerprinting systems under fair collusion attacks.

1. INTRODUCTION

To enforce the proper usage of multimedia content after deliv-
ery, digital fingerprinting labels each distributed copy with unique
identification information. It enables to trace traitors who use
their copies for unauthorized purposes. There is a powerful at-
tack against digital fingerprinting systems, called collusion attack.
During collusion, a group of users receive differently fingerprinted
versions of the same content, and they work together to attenuate
the original fingerprints. To support multimedia forensics, a digi-
tal fingerprinting system should be robust against such multi-user
collusion attacks as well as attacks by a single adversary.

Analysis of collusion attacks provides the basis for collusion
secure fingerprint design and is an important research area in dig-
ital fingerprinting. Collusion attacks on fingerprints for generic
data were studied in [1]. Considering the uniqueness of multime-
dia that fingerprints can be seamlessly embedded into host signals,
in [2] and [3], collusion attacks were modeled as the averaging at-
tack followed by an additive noise. The collusion attack was gen-
eralized to linear shift invariant filtering followed by an additive
noise in [4]. In [5] and [6], several types of collusion were studied,
including a few order statistics based nonlinear attacks.

Most prior work on multimedia fingerprint design and collu-
sion attacks assumed that users receive copies of the same quality.
However, scalability is often required for video transmission over
heterogenous networks to users with different processing capabil-
ity, and it enables the receivers to partially decode the compressed
bit stream and reconstruct meaningful information of the content.
To fully understand the challenges in multimedia fingerprinting,
it is important to consider the general scenario and study the im-
pact of scalability on digital fingerprinting systems and collusion
attacks. Taking temporal scalability as an example, this paper stud-
ies multi-user collusion when attackers receive copies of different
quality. We focus on fair collusion attacks in which colluders share
the same risk of being captured, and we analyze the constraints on
and the effectiveness of collusion in this scenario.

The authors can be reached at hzhao and kjrliu@eng.umd.edu.

This paper is organized as follows. Section 2 introduces the
system model, including the temporally scalable video coding sys-
tems and the digital fingerprinting systems. In Section 3, we inves-
tigate the collusion attacks when colluders receive copies of differ-
ent quality, and provide statistical analysis on the effectiveness of
the collusion attacks. Section 4 shows the simulation results on
real video sequences. Conclusions are drawn in Section 5.

2. SYSTEM MODEL

2.1 Temporally Scalable Video Coding Systems
Layered video coding is widely used in the literature to accom-

modate heterogenous networks, and it decomposes the video into
non-overlapping bit streams of different priority. Figure 1 shows
the block diagrams of a two-layer scalable codec. Without loss
of generality, we consider a temporally scalable video coding sys-
tem with three-layer scalability: the base layer with the highest
priority, the enhancement layer 1 with medium priority, and the
enhancement layer 2 with the lowest priority. We use the simple
frame skipping and frame copying to implement temporal down-
sampling and up-sampling, respectively. In such a video coding
system, different frames are encoded in different layers1. As an
example, frame 1, 5, 9, · · · are encoded in the base layer, frame
3, 7, 11, · · · are encoded in the enhancement layer 1, and frame
2, 4, 6, 8, · · · are encoded in the enhancement layer 2.

Assume that Fb, Fe1 and Fe2 contain the indices of the frames
that are encoded in the base layer, enhancement layer 1 and en-
hancement layer 2, respectively. Define F (i) as the set containing
the indices of the frames that user u(i) receives from the content
owner. We further define Ub�={u(i) : F (i) = Fb} as the subgroup

of users who receive the base layer only; Ub,e1�
={u(i) : F (i) =

Fb ∪ Fe1} is the subgroup of users who receive the base layer and

enhancement layer 1; and Uall�={u(i) : F (i) = Fb ∪ Fe1 ∪ Fe2}
is the subgroup of users who receive all three layers.

2.2 Digital Fingerprinting Systems
We consider a digital fingerprinting system including finger-

print embedding, collusion attacks and colluder identification.

Fingerprint Embedding Spread spectrum embedding has been
widely used in the literature due to its robustness against many at-
tacks [7]. For the jth frame in the video sequence represented by
a vector Sj of length Nj , and for each user u(i) who subscribes to
frame j, the content owner generates a unique fingerprint W(i)

j of

length Nj . The fingerprinted copy that will be distributed to u(i) is
X

(i)
j (k) = Sj(k) + JNDj(k) · W (i)

j (k), where X
(i)
j (k), Sj(k)

and W
(i)
j (k) are the kth components of the fingerprinted frame

1For example, with MPEG-2 video coding, the base layer contains all
the I frames, the enhancement layer 1 contains all the P frames, and the
enhancement layer 2 contains all the B frames.
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Fig. 1. A two-layer scalable codec. (Top): encoder, (bottom):
decoder.

X
(i)
j , the host signal Sj and the fingerprint vector W

(i)
j , respec-

tively. JNDj is the just-noticeable-difference from human visual
models [7], and is used to control the energy of the fingerprints.

In this paper, we assume that {W(i)
j } follow normal distri-

bution with zero mean and variance σ2
W , and assume that finger-

prints for different users are independent of each other. To com-
bat the intra-content collusion attacks including frame swapping
and frame averaging, in each distributed copy, similar to the work
in [8], we embed correlated fingerprints in adjacent frames, and the
correlation between two fingerprints embedded in different frames
depends on the similarity between the two host frames.

Collusion Attacks In a recent investigation [3], it was shown that
if all collusion attacks generate colluded copies of the same qual-
ity, order statistics based nonlinear attacks have approximately the
same performance as the averaging collusion. So we only consider
the averaging collusion attacks in this paper.

Given that the colluders receive fingerprinted copies of differ-
ent quality due to network heterogeneity, we assume that they wish
to generate a colluded copy of high resolution and good quality
under the constraints that every attacker has equal probability of
detection. During collusion, the colluders first divide themselves
into three non-overlapping subgroups:

• SCb�={i : F (i) = Fb} contains the indices of the colluders
who receive the base layer bit streams only;

• SCb,e1�
={i : F (i) = Fb ∪ Fe1} contains the indices of the

colluders who receive base layer and enhancement layer 1;

• and SCall�={i : F (i) = Fb ∪ Fe1 ∪ Fe2} contains the
indices of the colluders who receive all three layers.

Assume that Kb, Kb,e1 and Kall are the number of colluders in
subgroups SCb, SCb,e1 and SCall, respectively. Secondly, the
colluders apply the intra-group collusion attacks:

• For each frame j ∈ Fb that they received, the colluders in
the subgroup SCb generate Zb

j =
∑

i∈SCb X
(i)
j /Kb.

• For each frame j ∈ Fb ∪Fe1 that they received, the collud-
ers in SCb,e1 generate Zb,e1

j =
∑

i∈SCb,e1 X
(i)
j /Kb,e1.

• For each frame j ∈ Fb ∪ Fe1 ∪ Fe1 that they received, the
colluders in SCall generate Zall

j =
∑

i∈SCall X
(i)
j /Kall.

Define F c as the set containing the indices of the frames in the
colluded copy. For simplicity, we let F c ∈ {Fb, Fb ∪ Fe1, Fb ∪
Fe1 ∪Fe2} . Finally, as shown in Figure 2, the colluders apply the
inter-group collusion attacks to generate the colluded copy {Vj}:

• For each frame j ∈ Fb in the base layer, Vj = β1Z
b
j +

β2Z
b,e1
j + β3Z

all
j + nj where β1 + β2 + β3 = 1. To

∈

∈

∈

∈

∈ ∈

∈∈ ∈

Fig. 2. The intra-group and inter-group collusion attacks.

ensure that the energy of each of the original fingerprints is
reduced, we let 0 ≤ β1, β2, β3 ≤ 1 in this paper. nj is an
additive noise to further hinder the detection.

• If Fe1 ⊂ F c and the colluded copy contains frames in the
enhancement layers, then for each frame j ∈ Fe1 in the
enhancement layer 1, Vj = α1Z

b,e1
j +α2Z

all
j +nj where

0 ≤ α1, α2 ≤ α1 + α2 = 1 and nj is an additive noise.

• If Fe2 ⊂ F c and the colluded copy contains all the frames,
then for each frame j ∈ Fe2 in the enhancement layer 2,
Vj = Zall

j + nj where nj is an additive noise.

Define nj(k) as the kth component of the additive noise vec-
tor nj . In practice, the variance of nj(k) is usually proportional
to JNDj(k), the corresponding just-noticeable-difference. This
is because from human visual models [7], a larger JNDj(k) im-
plies that a noise with larger energy can be added to the corre-
sponding host signal component without introducing perceptually
distinguishable distortion; and the colluders usually maximize the
energy of the noise nj under the perceptual constraints in order to
maximize the effectiveness of the collusion attacks. In this paper,
we model { nj

JNDj
} as i.i.d. following distribution N (0, σ2

n).

During collusion, the colluders seek the collusion parameters,
F c, {βk}k=1,2,3 and {αl}l=1,2, to satisfy the fairness constraints.
Detailed analysis of the fairness constraints is in Section 3.

Colluder Identification For better detection performance [3], we
consider a non-blind detection scenario where the host signal is
first removed from the test copy before colluder identification. Then
for each frame j ∈ F c in the test copy, the detector extracts the
fingerprint Yj = (Vj − Sj) /JNDj . Finally, the detector calcu-
lates the similarity between the extracted fingerprint and each of
the original fingerprints, compares with a threshold and estimates
the identities of the colluders ŜC.

For each user u(i), the detector first calculates F̆ (i)�=F (i) ∩
F c, where F (i) contains the indices of the frames received by user
u(i) and F c contains the indices of the frames in the colluded copy.
During detection, we use a simple detector that considers finger-
prints extracted from all layers collectively and calculates

T
(i)
N =

⎛⎝ ∑
j∈F̆ (i)

〈Yj ,W
(i)
j 〉
⎞⎠ /

√ ∑
j∈F̆ (i)

||W(i)
j ||2, (1)

where ||W(i)
j || is the Euclidean norm of W

(i)
j . Given a pre-

determined threshold h, ŜC = {i : T
(i)
N > h}.

2.3 Performance Criteria
To evaluate the effectiveness of the collusion attacks and the

robustness of the embedded fingerprints, we use the commonly
used criteria in the literature [3]: the probability of capturing at

II - 1046

➡ ➡



Table 1. Fairness Constraints on Collusion Attacks and The Selection of Collusion Parameters.

F c = Fb∪Fe1∪Fe2

(Highest resolution)
Fairness Constraints

⎧⎪⎨
⎪⎩

Kb
√

Nb

Kb
√

Nb+Kb,e1
√

Nb+Ne1+Kall
√

Nb+Ne1+Ne2
≤ Nb

Nb+Ne1+Ne2
,

Kall
√

Nb+Ne1+Ne2

Kb
√

Nb+Kb,e1
√

Nb+Ne1+Kall
√

Nb+Ne1+Ne2
≥ Ne2

Nb+Ne1+Ne2
.

Parameter Selection

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β1 = Nb+Ne1+Ne2
Nb

Kb
√

Nb

Kb
√

Nb+Kb,e1
√

Nb+Ne1+Kall
√

Nb+Ne1+Ne2
,

β2Nb + α1Ne1 =
(Nb+Ne1+Ne2)Kb,e1√Nb+Ne1

Kb
√

Nb+Kb,e1
√

Nb+Ne1+Kall
√

Nb+Ne1+Ne2
,

β3 = 1 − β1 − β2, α2 = 1 − α1.

F c = Fb ∪ Fe1

(Medium resolution)
Fairness Constraints

Kb
√

Nb

Kb
√

Nb+(Kb,e1+Kall)
√

Nb+Ne1
≤ Nb

Nb+Ne1
.

Parameter Selection

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β1 = Nb+Ne1
Nb

Kb

√
Nb

Kb
√

Nb+(Kb,e1+Kall)
√

Nb+Ne1
,

β2 = Kb,e1

Kb,e1+Kall (1 − β1) , β3 = 1 − β1 − β2,

α1 = Kb,e1

Kb,e1+Kall , α2 = 1 − α1.

F c = Fb (Lowest
resolution)

Fairness Constraints No constraints on (Kb, Kb,e1, Kall) and (Nb, Ne1, Ne2).

Parameter Selection β1 = Kb

Kb+Kb,e1+Kall , β2 = Kb,e1

Kb+Kb,e1+Kall , β3 = Kall

Kb+Kb,e1+Kall .

least one colluder (Pd) and the probability of accusing at least one
innocent user (Pfp). Other criteria give the same trend.

To measure the perceptual quality of the colluded copy, we
use |F c| that is the total number of frames in the colluded copy2.
For simplicity, |F c| ∈ {|Fb|, |Fb| + |Fe1|, |Fb| + |Fe1| + |Fe2|}.
When |F c| is larger, the colluded copy has more frames and higher
temporal resolution, and therefore, better quality.

3. FAIRNESS CONSTRAINTS AND PERFORMANCE
ANALYSIS OF COLLUSION ATTACKS

3.1 Fairness Constraints on Collusion Attacks
Assume that Nb, Ne1 and Ne2 are the lengths of the finger-

prints embedded in the base layer, enhancement layer 1 and en-
hancement layer 2, respectively, and SC is set containing indices
of the colluders. We can show that for each user u(i), the detec-
tion statistics of (1) follow Gaussian distribution p(T

(i)
N |SC) ∼

N (µ(i), σ2
n), where σ2

n is the variance of the additive noise
nj

JNDj
.

µ(i) = 0 when u(i) is innocent, and µ(i) > 0 when u(i) is guilty.
For a guilty colluder i ∈ SC, µ(i) depends on F c and F (i).

Fc = Fb ∪ Fe1 ∪ Fe2 When the colluded copy contains all
frames in the video, we can show that for colluder u(i∈SC),

µ(i) ≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
β1
√

Nb

Kb σW , if i ∈ SCb,
β2Nb+α1Ne1

Kb,e1
√

Nb+Ne1
σW , if i ∈ SCb,e1,

β3Nb+α2Ne1+Ne2

Kall
√

Nb+Ne1+Ne2
σW , if i ∈ SCall.

(2)

Detailed derivation of µ(i) is available in [9].

Fc = Fb ∪ Fe1 When the colluded copy contains frames in the
base layer and enhancement layer 1, we can approximate µ(i) by

µ(i) ≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
β1
√

Nb

Kb σW , if i ∈ SCb,
β2Nb+α1Ne1

Kb,e1
√

Nb+Ne1
σW , if i ∈ SCb,e1,

β3Nb+α2Ne1

Kall
√

Nb+Ne1
σW , if i ∈ SCall.

(3)

Fc = Fb In this scenario, we have

µ(i) ≈

⎧⎪⎪⎨⎪⎪⎩
β1
√

Nb

Kb σW , if i ∈ SCb,
β2
√

Nb

Kb,e1 σW , if i ∈ SCb,e1,
β3
√

Nb

Kall σW , if i ∈ SCall.

(4)

2|A| denotes the size of the set A.

From the above analysis, all colluders have the same prob-
ability to be detected if their detection statistics have the same
mean. Therefore, for colluders u(i1), u(i2) and u(i3) where i1 ∈
SCb, i2 ∈ SCb,e1 and i3 ∈ SCall , they seek the parameters
F c, {βk}k=1,2,3 and {αl}l=1,2 to satisfy µ(i1) = µ(i2) = µ(i3).

Table 1 summarizes the constraints on the collusion attacks
and the selection of the collusion parameters for three different
scenarios, where the colluded copy has the highest, medium and
lowest frame rates, respectively. Detailed analysis is in [9].

From Table 1, generating a colluded copy of higher resolution
and better quality puts more severe constraints on collusion. When
the colluded copy has higher resolution, the fairness constraints re-
quire that there are more attackers in subgroups SCb,e1 and SCall

and more colluders receive enhancement layers.
To check the fairness constraints and select the collusion pa-

rameters, the colluders need to estimate Nb : Ne1 : Ne2, the ra-
tio of the lengths of the fingerprints embedded in different lay-
ers. Since adjacent frames in a video sequence are similar to
each other and have approximately the same number of embed-
dable coefficients, the colluders can use the following approxima-
tion Nb : Ne1 : Ne2 ≈ |Fb| : |Fe1| : |Fe2|.
3.2 Performance Analysis

Assume that there are a total of M users and a total of K
colluders. If the colluders choose the collusion parameters as in
Table 1, then given a colluder set SC, for each user u(i),

p(T
(i)
N |SC) ∼

{
N (µ, σ2

n) if i ∈ SC,

N (0, σ2
n) if i /∈ SC,

(5)

where σ2
n is the variance of nj/JNDj . The M detection statistics

{T (i)
N }i=1,··· ,M are independent of each other since the M finger-

prints assigned to different users are generated independently. We
can show that for i ∈ SC, µ in (5) can be approximated by

µ ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Nb+Ne1+Ne2

Kb
√

Nb+Kb,e1
√

Nb+Ne1+Kall
√

Nb+Ne1+Ne2
σW

if F c = Fb ∪ Fe1 ∪ Fe2,
Nb+Ne1

Kb
√

Nb+(Kb,e1+Kall)
√

Nb+Ne1
σW if F c = Fb ∪ Fe1,√

Nb

Kb+Kb,e1+Kall σW if F c = Fb.

Given a threshold h, we can approximate Pd and Pfp by Pd ≈
1 − (1 − Q(h−µ

σn
))K and Pfp ≈ 1 − (1 − Q( h

σn
))M−K .

From the above analysis, the effectiveness of the collusion at-
tacks depends on the resolution of the colluded copy. When the
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(a) |F c|: the total number of frames in the colluded copy (b) Pd: the probability of capturing at least one colluder

Fig. 3. Simulation results on the first 40 frames of sequence “carphone”. Assume that there are a total of M = 450 users and |Ub| =
|Ub,e1| = |Uall| = 150. (Nb, Ne1, Ne2) = (72222, 71926, 143820). K = 150 and (Kb, Kb,e1, Kall) are on the line (6). Pfp = 10−3.

colluded copy has a higher frame rate and better quality, the ex-
tracted fingerprint is longer and provides more information of the
colluders’ identities. Thus, the colluders have a larger probability
to be captured. The colluders have to consider the tradeoff between
the probability of detection and the quality of the colluded copy.

4. SIMULATION RESULTS

In our simulations, we test on the first 40 frames of the sequence
“carphone” and choose Fb = {1, 5, 9, · · · }, Fe1 = {3, 7, 11, · · · },
and Fe2 = {2, 4, 6, · · · } as an example of the temporal scal-
ability. At the content owner’s side, we use the human visual
model based spread spectrum embedding in [7] and embed fin-
gerprints in the DCT domain. The fingerprints follow distribution
N (0, σ2

W ) with σ2
W = 1/9. The length of the fingerprints embed-

ded in the base layer, enhancement layer 1 and enhancement layer
2 are Nb = 72222, Ne1 = 71926 and Ne2 = 143820, respec-
tively. We assume that there are a total of M = 450 users, and
|Ub| = |Ub,e1| = |Uall| = 150.

During collusion, we assume that the collusion attack is also
in the DCT domain and we fix the total number of colluders K =
150. 0 ≤ Kb, Kb,e1, Kall ≤ 150 and they are on the line

Kall
√

Nb + Ne1 + Ne2

Kb
√

Nb + Kb,e1
√

Nb + Ne1 + Kall
√

Nb + Ne1 + Ne2

=
Ne2

Nb + Ne1 + Ne2
, (6)

which is the boundary of the fairness constraints in Table 1. For
each frame j in the colluded copy, We adjust the power of the
additive noise nj such that ||nj/JNDj ||2 = 2||W(i)

j ||2, where
JNDj is the just-noticeable-difference from human visual mod-
els. We assume that the colluders generate a colluded copy of the
highest possible quality under the fairness constraints.

We consider a non-blind detector where the host signal is first
removed from the colluded copy. The detector then follows the
detection procedure in Section 2 to identify the colluders.

Figure 3 shows the simulation results. Figure 3 (a) plots the to-
tal number of frames in the colluded copy when (Kb, Kb,e1, Kall)
changes on the line (6), and Figure 3 (b) shows the correspond-
ing probability of capturing at least one colluder. From Figure 3,
when the colluded copy contains more frames and higher resolu-
tion, the detector has more information of the colluders’ identi-

ties, and therefore, the colluders have a larger probability to be
detected. This is consistent with our analysis in Section 3.

5. CONCLUSIONS

In this paper, we have studied fair collusion attacks on scalable
fingerprinting systems in which users receive fingerprinted copies
of different quality. We have shown that the fairness constraints
on collusion are more severe when generating a colluded copy of
higher resolution. In addition, both our analytical and simulation
results have shown that the colluders have a larger risk and are
more likely to be detected when they generate a colluded copy of
higher resolution and better quality. During collusion, the collud-
ers have to take into consideration this tradeoff between the prob-
ability of detection and the perceptual quality.
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