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ABSTRACT

Security and robustness are two important requirements for
image hash functions. In this paper, we introduce “differen-
tial entropy” as a metric to quantify the amount of random-
ness in image hash functions and to study their security. We
present a mathematical framework and derive expressions
for the proposed security metric for various common image
hashing schemes. Using the proposed security metric, we
discuss the trade-offs between the security and robustness
in image hashing.

1. INTRODUCTION

In the modern era, there is a widespread availability of mul-
timedia data in the digital form. This has led to a tremen-
dous growth of tools to manipulate digital data. To ensure
trustworthiness, content based image authentication tech-
niques like image hashing have been proposed. A hash
function is a short digital signature of the data [1]. Image
hashing has been used in authentication, content based im-
age retrieval (CBIR) and image/video watermarking [2, 3].

For the applications listed above, it is often necessary
that the image hash function be robust and secure. By ro-
bustness, we mean that the hash function should be resilient
to a set of content preserving manipulations such as fil-
tering; geometric and other affine transformations; addi-
tive noise; compression; and luminance non-linearities. The
hash should also depend on the secret key for applications
involving authentication and image/video watermarking. Fur-
thermore, the hash should not be easily forged or estimated
without the knowledge of the key.

Traditionally, the cryptographic hash functions have been
used in applications involving verification of data integrity
and data retrieval. Although they are very secure, these hash
functions are not robust as they are very sensitive to every
bit of the image data. This is undesirable and inconsistent
with human visual perception [3]. As a result, various ro-
bust image hashing schemes have been proposed [3, 4, 5].
Many of them follow a three-step framework to attain ro-
bustness. This involves extraction of certain invariant fea-
tures from the image (Feature Extraction), quantizing and
compressing them [3, 6]. To secure the hash, the key can
be employed in any of the three stages. Fridrich et al. have
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indicated that the feature extraction stage of the algorithm
must be key dependent for the hash to be secure [4]. The
authors have argued that if the feature extraction stage is
not secure, then the output of this stage would be publicly
known and therefore an attacker can forge a new image that
would give rise to the same features thus defeating the pur-
pose of hashing.

In the present work, we will show that the “differential
entropy” can be used as a metric to evaluate the security
of the feature extraction stage. We present an evaluation
framework and do an information theoretical analysis to ob-
tain the differential entropy of various existing schemes. We
then present comparison studies and discuss the trade-offs
between the security and robustness for these schemes.

2. SECURITY ANALYSIS

There are a number of image hashing schemes presented in
the literature. Each of them introduces security in the fea-
ture extraction stage in a unique way. For instance, both
Venkatesan’s scheme [3] and Mihcak’s scheme [7] intro-
duce security by the choice of random rectangles from which
features are generated; Fridrich et al. introduce security by
projecting the image onto random low-pass images [4]; and
in our recent work [5], we introduce randomness by per-
forming a weighted summation of the discrete polar Fourier
transform over random subsets.

To our best knowledge, there is no metric to compare
the degree of security of image hash functions. The only
relevant work to characterize security is by Radhakrishnan
et al. [8]. In their work, the authors show that the Visual
Hash Function (VHF) [4] is not secure and one can create
another visually dissimilar image that would give the same
hash values. However, their analysis is specific to the VHF
and cannot be easily extended to characterize the degree of
security of other commonly used hash functions.

In our analysis, we use the differential entropy (ℵ) as
a metric to characterize the amount of randomness in hash
values. The higher the differential entropy of the hash value,
the higher the randomness and the larger the number of ex-
haustive searches required to forge the hash value-h (which
is proportional to αℵ(h) for some α > 1). The schemes
that do not have any random components in the feature ex-
traction stage have differential entropy of −∞ by definition
and the number of exhaustive searches required to forge the
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hash is 0 as expected.
In the subsequent analysis, we model the output of the

feature extraction stage as random variables and find its de-
gree of uncertainty in terms of differential entropy. We
study three existing hashing schemes, namely, (A) Random
Discrete Polar FFT based scheme [5], (B) Fridrich’s VHF [4]
and (C) Venkatesan’s robust image hashing [3]. In the anal-
ysis, we assume that the attacker has complete information
about the image and the hashing algorithm used but not the
key used in the generation of the hash.

2.1. Security Analysis of Scheme A

The first scheme we analyze is the hashing scheme-2 pre-
sented in [5]. In this scheme, the FFT of the image is first
obtained and converted to polar coordinates to obtain I ′(ρ, θ).
This is sampled along the ρ-axis and the θ-axis to obtain

I ′
(
ρi,

(2j+1)π
K

)
(where 1 ≤ i ≤ N and 0 ≤ j ≤ K − 1).

A weighted summation is performed along a random subset
of the discretized ρ-axis to form the kth hash value hk. The
weights of the summation are Gaussian distributed random
variables {βik} with mean µ and variance σ2. The hash
values can be expressed as

hk =
N∑

i=1

λikβikqρi , where (1)

qρi =
K−1∑
j=0

∣∣∣∣I ′
(

ρi,
(2j + 1)π

K

)∣∣∣∣ , (2)

and λik are Bernoulli distributed random variables.
To find the differential entropy ℵ(hk), we first try to ob-

tain the probability density function (PDF) fhk
(x) of the

random variables hk. A detailed analysis of the system
reveals that the PDF has rather a complex form and con-
tains 2N terms. Thus, obtaining ℵ(hk) from the PDF is im-
practical. We instead analyze the system to find the lower
and the upper bounds. Without loss of generality, we as-
sume that ρ1 < ρ2 < . . . < ρN and therefore by the en-
ergy compaction property of the Fourier transform we have
qρ1 ≥ qρ2 ≥ . . . ≥ qρN

for most natural images. We ad-
ditionally use the fact that the entropy is a concave function
to obtain the lower bound

ℵ(hk) ≥ 2N − 1
2N+1

log2(2πe σ2q2
ρN

) +
1

2N

N∑
i=1

(
N
i

)
log2(i)

(3)
To derive the upper bound, we note that of all distribu-

tions with the same variance the Gaussian has the maximum
differential entropy. Therefore, we find the variance of the
hash values hk and obtain the upper bound on ℵ(hk) us-
ing the differential entropy of the Gaussian distribution as
follows

ℵ(hk) ≤ 1
2

log2

(
(2πe)

(
σ2

2
+

m2

4

) N∑
i=1

q2
ρi

)
. (4)

2.2. Security Analysis of Scheme B

In Fridrich’s scheme, uniformly distributed random images
(X(r)) are generated using a secret key [4]. The resulting
random images are then spatially averaged with a m × n
filter {αij}. The output of the filtering operation Y (r) is

Y
(r)
kl =

�m
2 �∑

i=−�m
2 �

�n
2 �∑

j=−�n
2 �

αijX
(r)
i+k,j+l. (5)

The image I is then projected on the N-randomly smooth
patterns {Y (r), r = 1, 2, . . . , N} to obtain an intermediate
hash value hr. These intermediate values are then quantized
to generate the final hash. It can be shown that

hr =
H∑

k=1

W∑
l=1

Y
(r)
kl Ikl =

�m
2 �∑

i=−�m
2 �

�n
2 �∑

j=−�n
2 �

αijV
(r)
ij ,

where V
(r)
ij =

H∑
k=1

W∑
l=1

X
(r)
i+k,j+lIkl.

We note that V
(r)
ij is a weighted sum of W × H uni-

formly distributed random variables {X(r)
ij }with the weights

determined by the image pixel values Iij . We can therefore

assume that V (r)
ij are Gaussian distributed. We also note that

the variables V
(r)
ij are highly correlated and

E(V (r)
ij V

(r)
ab ) =

1
12

H∑
k=1

W∑
l=1

IklIi+k−a,j+l−b

+

(
1
2

H∑
k=1

W∑
l=1

Ikl

)2

(6)

Since hr is a sum of Gaussian distributed variables V
(r)
ij ,

it would also be Gaussian. Therefore, we compute the dif-
ferential entropy of hr from its variance.

ℵ(hr) =
1
2

log2

(
2πe

1
12

H∑
p=1

W∑
q=1

IpqI
(αα)
pq

)
(7)

where I(αα) is obtained by filtering the image I twice with
the filter {αij}.

2.3. Security Analysis of Scheme C

This scheme first takes a 3-level DWT of the image. A ran-
dom tiling of each subband of the DWT of the image is gen-
erated. The mean (or the variance) of the pixel values in the
random rectangle is used to form the feature vector [3]. This
feature vector is randomly quantized and compressed.

We present a slightly modified approach to analyze the
security of this scheme by taking on the attackers’ view-
point. We shall show that the locations and sizes of the
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Fig. 1. The plot of the PDF of Ni-the number of blocks in
ith row. Parameters wmin = 10, wmax = 40 and W = 512

exact random partitions are not required to forge the hash.
The attacker can instead make an intelligent guess of im-
age statistics based on his/her knowledge of the image and
by replacing the random partitions with uniformly spaced,
equal sized partitions. If the attacker is correct in estimating
the number of partitions Ni in each row and the number of
rows M , then he/she can get a good estimate of the hash
vector.

As a first step of the analysis, we derive a model for Ni

and M by modelling the block partitioning algorithm. The
block partitioning algorithm can be approximated as a com-
bination of two 1-D problems - partitioning along the hor-
izontal direction and then along the vertical direction. To
partition along the width of the image, we generate random
numbers {Ui} uniformly distributed in [wmin, wmax] where
wmin and wmax are the minimum and the maximum widths
of the random block. The location of the nth partition is
then given by a set of random variables Tn (Tn =

∑n
i=1 Ui).

We use a Gaussian approximation for the PDF of Tn to ob-
tain the PDF of Ni. A sample of the PDF of Ni is shown in
Fig. 1. It can be shown that the maximum likelihood (ML)
estimate of the random variable Ni is the mean (mNi )

Nest = mNi =
2W

wmax + wmin
. (8)

Similarly, the ML estimate of the random variable M can
be shown to be

Mest =
2H

hmax + hmin
, (9)

where hmin and hmax are the minimum and the maximum
heights of the random block.

Once the number of rows and columns are estimated, the
attacker can estimate the image statistics using uniform size
partitions of size ( W

Nest
) × ( H

Mest
). We plot the actual hash

values, the estimated and the error in Fig. 2. Note that the
error has a much lower dynamic range than the actual value.
The differential entropy(ℵ) of the scheme can be estimated
using the error. For the Lena image, ℵ(hk) is around 5.74.
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Fig. 2. The plot of actual, estimated and error in estima-
tion of the image statistics vector for the Lena image with
wmin = 10, wmax = 40 and W = 512

0 100 200 300 400 500
−10

−8

−6

−4

−2

0

2

4

Maxmimum block size (w
max

)

Di
ffe

re
nti

al 
En

tro
py

Differential entropy of Scheme C

w
min

 = 0
w

min
 = 10

w
min

 = 20

Fig. 3. The entropy of the Venkatesan’s scheme plotted for
different input values of wmax and wmin. W = H = 512,
wmin = hmin and wmax = hmax.

An alternate way to analyze the security of the scheme
is by considering the effects of the synchronization errors
introduced by a wrong estimate in Ni (and M ). We repre-
sent the number of synchronization errors in the nth row
in the form of Yn =

∑n
i=1(Ni − Nest). To obtain the

upper bound for the differential entropy, we construct the
MxM correlation matrix (R) using Rii = E(Y 2

i ) = iσ2
N

and Rij = E(YiYj) = min(i, j)σ2
N where σ2

N is the vari-
ance of Ni. It can be shown that |R| = σ2M

N and therefore
the differential entropy of the hash value is

ℵ(hk) =
1
2

log2(2πeσ2
N ) +

1
2Mest

log2

(
1 +

1
12σ2

N

)
(10)

We can see that the differential entropy of the scheme
heavily depends on the value of the variance σ2

N . At very
low wmax, we have σ2

N → 0 and therefore ℵ(hk) → −∞
as shown in Fig. 3. This result is expected because when
wmax approaches wmin, there is no longer any randomness
in the choice of the window widths and hence the scheme
would no longer be secure.

2.4. Numerical Results and Comparison

We show in Fig. 4 the plot of the derived lower and the up-
per bounds of the entropy of the Scheme A with the number
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Fig. 4. Entropy of the hash values for the Scheme A plotted
with respect to the number of sampling points N. Results for
Scheme B is also shown for comparison

of sampling points N . To evaluate these bounds, we nu-
merically compute a PDF for the hash values and calculate
the true differential entropy of the PDF. Note that the upper
bound plotted using equation (4) is a very tight upper bound
and is almost equal to the calculated differential entropy.
This is because, the true PDF of the hash values is almost
Gaussian with the same mean and variance as those used in
the upper bound calculation. We observe that the differen-
tial entropy of Scheme A is greater than that of Scheme B.
This is a consequence of the filtering operations in Scheme
B, which reduces the variance of the random variables and
hence its entropy. The differential entropy of Scheme C is
lower than those of Schemes A and B (compare Fig. 3 and
4). This is because, in Scheme C, the image statistics can
be estimated to reasonable accuracy without the knowledge
of the exact block partitions. However, in other schemes,
the attackers need to guess some random variables used in
computing features (βik in Scheme A, Y (r) in Scheme B).

Notice that we only consider the security of the feature
extraction stage in this work. While random permutation or
other techniques alike can be applied to almost all feature
extraction approaches to bring further randomness, the same
type of post processing often enhances the overall security
by about the same amount. This does not change the relative
security results between the schemes obtained in this work,
and thus justifies our focus on the feature extraction stage.

3. DISCUSSIONS AND CONCLUSIONS

In all the three schemes that we have studied, we have ob-
served a trade-off between the security and the robustness
in the hashing schemes. We use differential entropy as a
security metric; and assess the amount of robustness based
on the Receiver Operating Characteristics (ROC) [5]. The
probability of correct decision (PD) is computed for a given
probability of false alarm (PF ), based on the performance of
the algorithm for various authentic modifications. A higher
PD for the same PF indicates more robustness. A compar-
ative study of robustness of various schemes is presented in
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Fig. 5. Robustness and Security trade-off for the Scheme A
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our recent work [5]. In this work, we discuss the trade-off
between security and robustness.

For Scheme A, we observe from the lower and the upper
bounds that as the variance of the random variables {βik}
is increased, the bounds on differential entropy (hence the
security) increase, while the robustness (in terms of PD for
the same PF ) decreases as shown in Fig. 5. Similar trend
can also be observed for Schemes B and C. For example,
in Scheme B, it can be shown that as the order of the filter
increases, the entropy decreases and robustness increases.
This is expected as increasing the order of the filter implies
more averaging and therefore less randomness and more ro-
bustness.

In summary, in this paper, we have introduced the dif-
ferential entropy as a metric to study the security in image
hashing systems. We then formulate a method and derive
explicit expressions for differential entropy for the feature
extraction stage of various existing schemes. We have pre-
sented comparison studies and discussed the trade-offs be-
tween security and robustness for existing schemes.
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