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ABSTRACT

The difficulty of building an effective digital rights man-
agement system stems from the fact that traditional crypto-
graphic primitives such as encryption or scrambling do not
protect audio or video signals once they are played in plain-
text. This fact, commonly referred to as “the analog hole,”
has been responsible for the popularity of multimedia file
sharing which cannot be controlled, at least technically, by
content’s copyright owners. In this paper, we explore a spe-
cific issue in multimedia fingerprinting as an answer to “the
analog hole” problem. We analyze the collusion resistance
of three large classes of spread-spectrum fingerprints using
a recently introduced collusion procedure, the gradient at-
tack. Surprisingly, we show that the collusion resistance of
direct-sequence and uniformly distributed spread spectrum
fingerprints is a small constant that does not depend on the
object size, whereas bounded Gaussian fingerprints demon-
strate significantly better robustness to the gradient attack.

1. INTRODUCTION

Significantly increased levels of multimedia piracy over the
last decade have put the movie and music industry under
pressure to deploy a standardized anti-piracy technology.
Initiatives, such as the Secure Digital Music Initiative [1],
have been established to develop open technology specifi-
cations that protect the playing, storing, and distributing of
digital music and video. The problem of ensuring copy-
right of multimedia at the client side lies in the fact that tra-
ditional data protection technologies such as encryption or
scrambling cannot be applied exclusively as they are prone
to digital copying or analog re-recording. The moment the
adversary obtains a plain-text digital copy of the multimedia
clip, its copyright owners, at least technically, lose control
over content’s distribution. Thus, almost all modern copy-
right protection mechanisms tend to rely to a certain extent
on watermarks: imperceptive and secret marks hidden in
host signals. Two different types of protection systems have
evolved over the past decade: content screening [2] and fin-
gerprinting, which is the central focus of our work.

In a typical scenario that uses multimedia marking for
forensic purposes, studios create a uniquely marked content
copy for each individual user request. User-specific distinct
watermarks are commonly denoted as fingerprints. The fin-

gerprinted copy is securely distributed to the user who plays
the content using a media player which is unmodified com-
pared to modern media players. Certain users may chose to
illegally distribute this content. To address this problem, the
media studios deploy search robots in order to find content
copies on the Internet. Illegally distributed content is re-
trieved and based upon the known user database as well as
the original clip, media studios use forensic analysis tools
to identify the pirates.

Imperceptiveness, robustness, and reliability are the key
requirements for fingerprints. One major difference with
respect to content screening is that the robustness require-
ment is significantly easier to satisfy - fingerprint detection
is done in the presence of the original clip, not “blindly”.
Major problem for fingerprinting systems is the collusion at-
tack. To launch such an attack, an adversarial clique of ma-
licious users colludes their copies in order to create a copy
which is statistically clean of any fingerprint traces (e.g., the
original) or a copy that incriminates another innocent user.
Collusion resistance for multimedia content is typically low
[3]. Because of this deficiency, fingerprinting systems are
commonly restricted to small distribution lists. Finally, one
of the most devastating problems for fingerprinting systems
is surprisingly, successful identity theft. An adversary with
a stolen identity can purchase a multimedia clip and then
illegally distribute it, leaving multimedia studios without a
target for legal action.

2. SPREAD-SPECTRUM FINGERPRINTS

The media signal to be fingerprinted, x ∈ RN , can be mod-
eled as a vector, where each element of x is an i.i.d. Gaus-
sian random variable with standard deviation A, i.e., xj =
N (0, A2). We discuss three classes of fingerprints:

• A class-I fingerprint w(i), uniquely generated for a
specific user i, is defined as a spread-spectrum se-
quence of N independent identically and uniformly
distributed random samples w(i) ∈ U [−δ,+δ]N .

• A class-II fingerprint w(i), uniquely generated for a
specific user i, is defined as a spread-spectrum se-
quence of N i.i.d. random samples w(i) ∈ {±δ}N .

• A class-III fingerprint w(i), uniquely generated for
a specific user i, is defined as a spread-spectrum se-
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quence of N i.i.d. random samples w(i) ∈ N̄{σ2, δ}N ,
where N̄ {σ2, δ} denotes a random bounded Gaussian
variable with zero-mean, δ as a maximum amplitude,
and variance equal to σ2.

Each element w
(i)
j is usually called a “chip.” The fin-

gerprinted copy y(i) is created by vector addition: y(i) =
x + w(i). Maximum fingerprint amplitude δ is selected as
large as possible with two constraints: the fingerprint must
be imperceptive and robust with respect to the estimation
attack [4].

The forensic detector obtains a modified version z of
one or more colluded fingerprinted signals z = a({y(i), i ∈
K}). We denote the set of users in the collusion clique as
K with cardinality K and an attack function a(·). Next,
let w · v denote the normalized inner product of vectors w
and v, i.e., w · v ≡ N−1

∑
wjvj , with w2 ≡ w · w. The

fingerprint detector performs a normalized correlation (or
matched filter) test:

d
(i)
T = c(f(z, x) − x,w(i)) =

[f(z, x) − x] · w(i)(
w(i)

)2 , (1)

against each user i in the user database U . Function f(·)
denotes a pirate-to-original alignment function. As the ad-
versary clique may choose to apply a non-linear geometric
bending transform such as the StirMark [6] in addition to
the collusion attack, the goal of this function is to perform
the realignment of the pirated copy with respect to the orig-
inal. An example of such a function is presented for both
audio and video in [8].

Using a classical Neyman-Pearson hypothesis test, the
detector decides that a certain user i has participated in K if
her fingerprint w(i) yields d

(i)
T > ∆T . The detection thresh-

old ∆T controls the trade-off between the probabilities of
false positive and false negative decisions. For example, if
z = y(i), then E[d(i)

T ] = 1. Also, for z = y(i), we have

E[d(j)
T ] = 0, j �= i. Since the noise in the detector is Gaus-

sian due to the Central Limit Theorem for all fingerprint
classes, the error probabilities of false negatives and posi-
tives are computed by integrating the tail of a correspond-
ing Gaussian probability density function. We recall from
modulation and detection theory that the correlation detec-
tor is optimal in the class of linear detectors in the presence
of i.i.d. noise [5].

3. COLLUSION RESISTANCE – |K| ≥ 2
Collusion is usually the most effective effort to defeat fin-
gerprinting schemes. While the estimation attack typically
produces a pirated copy of inferior quality, the result of col-
lusion is of equal or even better quality than the distributed
content. The adversary can have two types of goals: (i) re-
moval of their fingerprints from the pirated copy and (ii)
framing an innocent user. The latter attack is particularly

dangerous because it limits the number of copies the studios
can distribute. Once innocent users can be framed, the entire
system is rendered dysfunctional. Related work by Boneh
and Shaw [3] establishes fingerprint encoding schemes that
aim at improving collusion resistance w.r.t. type-(i) attacks
while reducing robustness to type-(ii) attacks.

Since spread-spectrum fingerprints are not prone to type-
(ii) attacks, we analyze the collusion resistance of the three
fingerprint classes with respect to the gradient attack [8].
This is a type-(i) attack that drastically reduces the collu-
sion resistance of fingerprinted content for certain finger-
print classes. Although the attack can be generalized to
several fingerprint modulation schemes, we focus only on
spread-spectrum fingerprints. We first revisit two collusion
schemes that have been introduced before [7].
Averaging. z′j = 1

K

∑K
i=1 y

(i)
j , i ∈ K.

Max-Min. 2z′′j = max{y(i)
j } + min{y(i)

j }, i ∈ K.
The max-min attack is equivalent to the majority attack

[3] for class-II fingerprints. First, we review the effect of
the attacks on class-I and II fingerprints. We denote as d′T
and d′′T the expected forensic correlation E[c(z − x,w(i))]
for the averaging and max-min attack respectively, where
i ∈ K. We derive the following theorems:

Theorem 1 Averaging vs. class-I fingerprints.
d′T = E[c(z′ − x,w(i))] = δ2

3K .

Theorem 2 Max-min vs. class-I fingerprints.
d′′T = E[c(z′′ − x,w(i))] = 2δ2

(K+1)(K+2) .

Proof: We identify two cases. In the first case, we
denote as Y the subset of all positions in the media vector
x, where a fingerprint under test, w(t), has the largest value.
We can compute the expected correlation at these positions:

c′ = E

⎡
⎣∑

j∈Y

vjw
(t)
j

⎤
⎦ =

δ∫
−δ

(
x + δ

2δ

)K−1

Kx2 dx

2δ

= δ2K
K2 − K + 2

K(K + 1)(K + 2)
, (2)

where v = z′′ − x is the attack vector extracted from the
attacked clip. In the second case, we identify all other posi-
tions in the media vector and denote them as Ȳ . Similarly,
we can compute the correlation of w(t) and the attack vector
v at these positions only as:

c′′ =

δ∫
−δ

Kx

(
x + δ

2δ

)K−1
x∫

−δ

y
dy

x + δ

dx

2δ

= δ2K
2 − K

K(K + 1)(K + 2)
. (3)

From c′ and c′′, we derive the main claim:

d′′T = c′
1
K

+ c′′
K − 1

K
=

2δ2

(K + 1)(K + 2)
. (4)
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Theorem 3 Averaging vs. class-II fingerprints.
d′T = E[c(z′ − x,w(i))] = δ2

K .

Theorem 4 Max-min vs. class-II fingerprints.
d′′T = E[c(z′′ − x,w(i))] = δ2

2K−1 .

Theorem 5 Max-Min < Averaging. For any bounded dis-
tribution of the fingerprint signal w, two pirated signals z′

and z′′ created by a collusion clique K of K > 2 users us-
ing the averaging and max-min attack respectively, result in
corresponding expected correlations d′′T < d′T .

Proof: (sketch) By approximating the distribution of
w as a superposition of infinitesimally narrow uniform dis-
tributions and using Theorems 1 and 2, one can derive the
main claim in this theorem.

Based on Theorem 5, we derive the gradient attack.

Definition 1 Gradient attack: z = z′′j −β(z′j − z′′j ), where

β is such that E[c(z − x,w(i))] ≈ 0 for each user i in the
collusion clique K and the pirated vector is perceptually
close to the original as ||z − x|| ≤ δ

√
NdB.

The rationale behind the attack is simple. For bounded
distributions of the fingerprint the max-min attack yields al-
ways a better expected estimate of the original content than
averaging. Thus, we can conclude that we have two points
in the N dimensional space, z′ and z′′, which define a direc-
tion z′ − z′′ in the space which is opposite to the direction
of all fingerprints in the collusion clique. The adversary can
move the result of the max-min attack z′′ along this direc-
tion as far as imperceptiveness with respect to the original
allows. However, the goal of the clique is to achieve invis-
ibility for the forensic analyzer E[c(z − x,w(i))] ≈ 0 for
each participant.

Theorem 6 Efficacy of the gradient attack. In order to set
E[c(z − x,w(i))] = 0 for fingerprints of class-I and II, the
adversary has to chose β′ and β′′ respectively, equal to:

β′ =
6K

(K − 1)(K − 2)
and β′′ =

K

2K−1 − K
. (5)

Figure 1 illustrates the efficacy of the gradient attack.
For several collusion clique K cardinalities 3 ≥ K ≤ 10,
we apply the gradient attack with β chosen according to
Theorem 6 which results in (∀i ∈ K)E[c(z − x,w(i))] = 0.
The right ordinate quantifies the expected correlation for the
averaging and max-min attack for fingerprints of class-I and
II. The left ordinate quantifies the resulting relative noise
ρ(z, y, x) = E[||z − x||/||y − x||] introduced due to the
gradient attack for fingerprints of class-I and II. One can
observe that even for K = 3, the expected output of the gra-
dient attack is actually of better quality than the distributed
marked copy as ρ(ŷ, y, x) < 1.
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Fig. 1. Efficacy of the gradient attack.

Clearly, the introduced noise is within the imperceptive
boundary - hence, the gradient attack is declared success-
ful even for K = 3. We conclude that the collusion re-
sistance for the two classes of fingerprints presented in this
manuscript, is constant K = O(1), i.e., invariant of object
size. This is significant improvement with respect to averag-
ing and the max-min attack which both enable the forensic
analyzer to seek for colluders’ traces due to the design of
their attack vectors. By using a fingerprint which is suffi-
ciently long, the forensic analyzer can detect all colluders
in case of such an attack. The gradient attack removes all
traces of the adversarial clique from the perspective of tra-
ditional detectors (see Eqn. 1). Finally, the fingerprinting
system can be slightly improved by randomizing and hiding
certain details (e.g., secret and varying δ) of the fingerprint
embedding algorithm.

4. ANALYSIS OF CLASS-III FINGERPRINTS

While fingerprints of class-I and II can be easily cancelled
out by the gradient attack, class-III fingerprints approximate
the true Gaussian distribution with infinite tails. A Gaussian
fingerprint w(i) = N (0, σ2) results in expected correlations
d′T = d′′T = σ2/K for the averaging and max-min attacks
respectively. Hence, the gradient vector z′ − z′′ has no ex-
pected correlation with the fingerprint of any participating
colluder E[c(z′ − z′′, w(i))] = 0, i ∈ K.

Truly Gaussian fingerprints are not practical due to the
noise peaks they introduce. Thus, we adopt a bounded Gaus-
sian N̄ (σ2, δ) for class-III fingerprints with the following
probability distribution function:

p(x) ≡
{

0,
[1−erfc(δ/σ

√
2)]−1

σ
√

2π
e−

x2

2σ2 ,

|x| > δ
|x| ≤ δ

, (6)

which bounds the random variable w
(i)
j within |w(i)

j | ≤ δ.
We denote the resulting variance of this variable as σ2

r .
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In order to evaluate the effect of the gradient attack on
class-III fingerprints, we adopt several realistic assumptions.
First, due to the application of the realignment function f(·),
we assume that the extracted signal f(z, x) = z − x + n,
where n is a noise signal modeled as a normal i.i.d. ran-
dom variable nj = N (0, σ2

n) with σn ≈ δ due to hi-fidelity
piracy. Note that the noise in the fingerprint detector is
greater than σn. Second, attacker’s goal is to set the correla-
tion value of the pirated content E[c(z−x+n,w(i))], i ∈ K
to τ , where the forensic detector cannot identify the user i
as a participant in the collusion clique due to false positives
ε > 1

2erfc(τ
√

N/σn

√
2). Typically, we bound ε > 10−5,

so to derive τ < erfc−1(2ε)
√

2/
√

N . For a realistic range
N ∈ [105, 109], we conclude τ ∈ [10−2, 10−4].

Definition 2 Collusion resistance is defined as the size K
of the collusion cliqueK sufficient to create z = z′′−β(z′−
z′′) such that E[c(z−x+n,w(i))] ≤ τ, i ∈ K and the total
noise of the attack vector is ||z − x|| ≤ δ

√
NdB.

For presentation simplicity, we evaluate the collusion re-
sistance of class-III fingerprints using simulation. In MAT-
LAB, we considered the case when σ ∈ {0.1, 0.2, . . . , 1},
δ = 1, and N = 105. Figure 2 illustrates the simulated
results for two extreme cases τ = 10−2, N ≈ 105 and
τ = 10−4, N ≈ 109. It is important to note that the col-
lusion resistance peaks at a certain σr. Higher σr makes the
bounded Gaussian appear more like uniform distribution re-
sulting in lower collusion resistance, i.e., greater efficacy of
the gradient attack. On the other hand, lower σr decreases
the expected correlation dT = σ2

r/K at the forensic ana-
lyzer, which translates to higher probability of a false posi-
tive due to the noise n = N (0, σn) in the detector. Note that
the peak collusion resistance for long media clips, N ≈ 109,
is substantial, K ≈ 180 for σr ≈ σ = 0.2. The accuracy
of the results obtained for τ = 10−4 in the experiments is
subject to certain variance due to relatively short N = 105

fingerprints used.

5. CONCLUSION

In this paper, we have evaluated three classes of spread-
spectrum fingerprints with respect to the recently introduced
gradient collusion attack [8]. The advantage of randomly
generated spread spectrum fingerprints is their robustness
to framing attacks [3]. We demonstrate that certain classes
of such fingerprints can provide an efficient collusion resis-
tance. We show that the adversary can cancel out simple
direct-sequence (class-II) and uniformly distributed (class-
I) spread spectrum fingerprints using only several content
copies. On the other hand, we also show that for bulky mul-
timedia such as hi-quality video, bounded Gaussians are an
effective fingerprint choice with carefully selected distribu-
tion parameters. For a 109-sample fingerprint, considering
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Fig. 2. Collusion resistance of class-III fingerprints.

the gradient attack and the amount of noise the adversary
can add to the content and still achieve a hi-fi pirated copy,
system’s collusion resistance of class-III fingerprints is on
par or better with respect to the resistance achieved using
the Boneh-Shaw fingerprint codes [3].

We stress several remaining questions as open problems:
(i) can the gradient attack be improved by leveraging on the
fact that the media signal is quantized using a mid- or high-
grain quantizer? (ii) is the gradient attack optimal consider-
ing a given attack noise level? (iii) can we derive fingerprint
codes with equivalent estimates regardless of the estimator?
and (iv) can randomization of the fingerprint generation pro-
cedure aid the robustness against the gradient attack?

6. REFERENCES

[1] The Secure Digital Music Initiative. On-line presence at:
http://www.sdmi.org.

[2] D. Kirovski, H. Malvar, and Y. Yacobi. A dual watermarking and
fingerprinting system. ACM Multimedia, 2002.

[3] D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital
data. IEEE Trans. on Information Theory, vol.44, no.5, pp.1897–
1905, 1998.

[4] D. Kirovski and H.S. Malvar. Spread-spectrum audio watermarking.
IEEE Transactions on Signal Processing, 2003.

[5] H.L. Van Trees. Detection, Estimation, and Modulation Theory. Part
I, New York: John Wiley and Sons, 1968.

[6] M. Kutter and F.A.P. Petitcolas. A fair benchmark for image water-
marking systems. Security and Watermarking of Multimedia Con-
tents, SPIE, vol.3657, pp.226–39, 1999.

[7] H. Zhao, M. Wu, Z.J. Wang, and K.J.R. Liu. Nonlinear collusion
attacks on independent fingerprints for multimedia. IEEE ICASSP,
2003.

[8] D. Schonberg and D. Kirovski. Fingerprinting and Forensic Analy-
sis of Multimedia. ACM Multimedia, to appear, 2004.

II - 1040

➡ ➠


