
FORMAT INDEPENDENT ENCRYPTION OF GENERALIZED SCALABLE

BIT-STREAMS ENABLING ARBITRARY SECURE ADAPTATIONS

Debargha Mukherjee*, Huisheng Wang+, Amir Said*, Sam Liu*

* Hewlett Packard Laboratories, Palo Alto, CA
+ Dept. of Electrical Engineering, University of Southern California, CA

ABSTRACT

Secure format-independent adaptation of bit-streams during delivery

is becoming increasingly important to cope with content piracy while

still accommodating diverse networks, terminals and formats.

Generalized scalable bit-streams are particularly advantageous in this

regard, since they enable a variety of efficient and secure adaptations.

Further, by associating such a bit-stream with appropriate metadata,

such as those standardized in MPEG-21 Part 7 entitled Digital Item

Adaptation (DIA), the adaptation process can be fully format-

independent. In this paper, to maximally secure a generalized scalable

bit-stream while allowing arbitrary encrypted domain adaptations,

strong progressive encryption methods are extended to multiple

dimensions. Further it is shown that by appropriate modeling of such

bit-streams and re-use of some DIA descriptions, the encryption and

decryption engines themselves can be entirely metadata-driven and

format-independent. This leads to end-to-end format-independent

secure and adaptive delivery architectures for scalable bit-streams.

1. INTRODUCTION

To improve multimedia content accessibility and to maximize

experience commensurate with diverse and dynamic terminal and

network capabilities and conditions, as well as individual preferences,

it is essential to adapt multimedia content in the delivery path to end

consumers. At the same time, unauthorized access to the content

during distribution must be prevented to protect the rights of

legitimate content owners. The solution is to use encryption methods

that allow possibly untrusted adaptation engines in the delivery path

to adapt content in the encrypted domain. A third factor is that the set

of rich media content formats to be delivered is growing fast. This

justifies a drive towards delivery infrastructure components, such as

adaptation or encryption/decryption engines or modules thereof that

use a universal processing model – which do not need frequent

upgrades to support new formats and can even support proprietary

ones. This is enabled by associating the content with standardized

metadata that is small enough to make delivery alongside the content

feasible, and not detailed enough to leak information about the

content from a security stand-point.

To satisfy the triple needs for adaptability, security and format-

independence during delivery, scalable bit-streams [1][2] appear

promising. From the progressive dependencies of a scalable bit-

stream it follows that secure adaptation is possible by use of

progressive encryption techniques, as shown in [3][4][5]. However,

because scalable bit-streams frequently contain multiple dimensions

of scalability, it is necessary to extend progressive encryption to

handle multi-dimensional dependencies.

In prior work [6][7][8], format-independent metadata-driven

adaptation of generalized scalable bit-streams was reported. Recently,

such metadata has been standardized in Part 7 of the emerging

MPEG-21 standard [9] entitled Digital Item Adaptation (DIA) [10].

In this work, we show that some of the same metadata enables the

encryption/decryption processes to be format-independent as well. In

combination this yields secure and adaptive delivery architectures for

scalable bit-streams, where the operation of all encryption, adaptation

and decryption engines in the delivery path rely solely on incoming

metadata and not on pre-knowledge of the format.

Fig. 1 shows a conceptual model for such a delivery architecture. A

scalable bit-stream originating from a server is encrypted by an

encryption engine based on associated metadata and a key provided

by a license server. The encrypted content and the unencrypted

metadata is then transmitted over an insecure channel, where both are

adapted possibly multiple times, by adaptation engines based on

adaptation constraints specified as in [6][7][8][10] derived from

network and terminal capabilities, conditions and preferences.

Finally, the decryption engine decrypts the encrypted content based

on currently associated metadata and recipient’s key, and delivers a

compliant bit-stream to an authorized recipient. Note that Fig. 1 does

not show initialization vectors (IV) that many encryption schemes

use. The IVs are typically generated randomly and conveyed to the

decryption engine in the clear. In Fig. 1, they would be included in

the metadata output from the encryption engine.

In the rest of the paper, we first present adaptation models for fully

scalable bit-streams, and then derive the principles and present some

instances of multi-dimensional progressive encryption of such bit-

streams. Finally, an implementation of encryption and decryption

engines using MPEG-21 DIA descriptions is reported.

2. MODELING SCALABILITY

For a scalable bit-stream, the bulk of the adaptation task is deletion of

bit-stream segments, which is often followed by update operations on

a few bit-stream fields as required for format compliance. In this

section, the delete and update operations are modeled and examined.

2.1. Delete

The inherent dependencies in a generalized scalable bit-stream, lead

to a universal logical model for all scalable bit-streams, referred to as

Server

Encryption Engine

(format-independent)

Adaptation Constraints

Encryption Key Decryption Key

Metadata Bit-stream

Adaptation Engine

(format-independent)

Decryption Engine

(format-independent)

Fig. 1 Format-independent delivery architecture.

II - 10330-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

the SSM model, proposed in [6][7][8]. This model constrains how

segments are deleted during adaptation.

According to a simplified version of this model, the data in an

elemental scalable bit-stream is organized in sequentially processed

units called adaptation units, on which adaptation decisions are made

and applied. Examples of adaptation units are GOP, Frame, Tile, etc.

Further, within each adaptation unit, the data is organized in a logical

hypercube, with a variable number of dimensions. If there are L

dimensions of scalability in each adaptation unit, and the ith

dimension of the nth adaptation unit contains li[n] layers, we can say

that the data in the nth adaptation unit consists of l0[n] l1[n] … lL–

1[n] logical data segments B(j0, j1, …, jL-1)[n], ji=0,1,…, li[n]–1,

i=0,1,…, L–1, called logical units, arranged in a hypercube. A logical

unit may consist of any number of contiguous bit-stream segments

located arbitrarily in the actual bit-stream. Fig. 2 (a) shows the logical

structure and mapping to the actual bit-stream for two adaptation

units of a bit-stream.

From the logical structure, generally speaking any arbitrary

selection of layers can be deleted for each dimension, during

adaptation. For simplicity we only consider fully scalable bit-streams,

where layers can only be dropped from the outer ends for each

dimension. Fig. 2(b) shows an adaptation of the bit-stream in Fig.

2(a), where 3x2 and 2x3 logical hypercubes from the origin are kept

for two adaptation units, the rest being deleted. Correspondingly, bit-

stream segments that the deleted logical units map to are deleted.

From the above model for deletion, it follows that causality of the

logical units must be maintained during encoding/encryption, so that

a decoder/decrypter can handle adapted content. That is, to

encode/encrypt logical unit B(j0, j1, …, jL–1)[n], the encoder/encrypter

can only use information from logical units B(k0, k1, …, kL–1)[n],

where ki ji for all i, and ki ji for at least one i. This would ensure

that for any valid adaptation, the decoder/decrypter can still

decode/decrypt the content unambiguously.

2.2. Update

Often in scalable bit-streams it is not just enough to delete logical

units, but also perform other update operations on certain fields in the

bit-stream, to ensure format-compliance. These fields are often of a

fixed-length. For instance, there may be fields conveying information

such as image/frame dimensions, number of layers included and so

on, that need to be updated in the bit-stream after deletion of logical

units. There may also be fields that specify lengths of certain bit-

stream segments or locations of other parts of the bit-stream that are

likely to need updates when logical units are deleted. Further, there

may be fields representing sequential counters, such as packet

number or frame number (temporal reference) that also are likely to

need updates when logical units are deleted.

While the exact mechanism for obtaining correct updates is

irrelevant for encryption, it is essential that these fields be left

unencrypted, so that adaptation engines in the delivery path can

modify these fields without affecting the decryption of the rest of the

bit-stream. Fortunately, for most fully scalable bit-streams, these

fields constitute a minor portion of the bit-stream, so that security

breach is minimal. The light-shaded parts of the bit-stream in Fig.

2(a) and (b) represent some update fields that are left unencrypted.

3. ENCRYPTION SYSTEM

The first step in encrypting a generalized scalable bit-stream is to

obtain the encryptable plaintext with a known length in bits for each

logical unit, by concatenating bit-stream segments corresponding to

the logical unit while excluding updateable fields. The mapping from

logical co-ordinates to corresponding bit-stream segments as well as

the location of the update fields, required for this step is conveyed by

means of a high-level syntax description metadata associated with the

bit-stream. The encryptable plaintext for each logical unit is

encrypted by a Logical Unit Encrypter (LUE) yielding a ciphertext

having the same length in bits as the plaintext, which is then

substituted into the bit-stream to create the secure bit-stream.

While in principle, each logical unit can be encrypted

independently, to ensure maximal security they must be encrypted in

a multi-dimensional progressive manner, so that encryption and/or

decryption of a given logical unit become impossible without

encryption and/or decryption of logical units causal to it. Assume the

LUE is associated with an initial state Sin, and on encrypting a

plaintext P of specified length reaches an end state Sout, where in

general Sout = f(Sin, P), f(.) being an arbitrary function. Then,

progressiveness can be ensured by making the initial state Sin of the

LUE for a given logical unit depend on the end states Sout of the LUE

for previous logical units along each dimension. If Sin(j0, j1,…, jL–

1)[n] and Sout(j0, j1,…, jL–1)[n] denote binary initial and ending states

of the LUE for the (j0, j1,…, jL–1)th logical unit plaintext for the nth

adaptation unit, then one can use:

Sin(0, 0,…, 0)[n] = IV[n]

Sin(j0, j1,…, jL–1)[n] = Sout(j0–1, j1,…, jL–1)[n]

 Sout(j0, j1–1,…, jL–1)[n] …

 Sout(j0, j1,…, jL–1–1)[n], ji=0,1,…, li[n]–1.

Actual bit-stream

(a) Pre-adaptation logical model and actual bit-stream

Logical model

Adaptation Unit 0 Adaptation Unit 1

Logical model

Adaptation Unit 0 Adaptation Unit 1

(b) Post-adaptation logical model and actual bit-stream

Actual bit-stream

Fig. 2 Bit-stream example showing two adaptation units: (a) with 3x4 logical hypercubes each, (b) with 3x2 and 2x3 logical hypercubes, after

adaptation of the bit-stream in (a). Dark-shaded logical units and segments are assumed deleted in (b). Light-shaded and cross-hatched segments

correspond respectively to update fields and segments that are neither included in logical units nor are update fields.

II - 1034

➡ ➡

It is assumed that Sout(j0, j1,…, jL–1)[n] = 0, when any ji<0. IV[n] is

an initialization vector for the nth adaptation unit, typically generated

randomly by an encrypter and sent in the clear to the decrypter.

Alternatively, it can be generated by a counter synchronized at the

decrypter. In many cases, since the logical unit with all zero co-

ordinates can always be assumed to be transmitted, it is possible to

further propagate the states along adaptation units, using:

Sin(0, 0,…, 0)[n+1] = IV[n+1] = Sout(0, 0,…, 0)[n],

with periodic resynchronization with a newly generated IV at

intervals of a group of adaptation units. Fig. 3 shows the above state

propagation mechanism for a 2-dimensional logical model.

Note that in a scalable bit-stream because the critical data is usually

in the initial layers, to reduce complexity only a partial set of logical

units B(j0, j1, …, jL–1)[n] with ji=0,1,…, min(mi, li[n])–1 can be

encrypted and the rest left unencrypted. Here mi is the max number of

layers to be encrypted for the ith dimension of each adaptation unit.

For the design of the actual LUE, block ciphers operated in one of

a variety of modes is considered. Cipher Block Chaining (CBC),

Cipher Feedback (CFB), Output feedback (OFB), and Counter are

some common modes of operation with several variants available for

each. But for the strongest possible encryption we seek modes that

are infinitely error propagating. In such modes, not only is the

encryption operation progressive, but also any change in a ciphertext

block makes it impossible to decrypt correctly the current and all

future blocks. It has been shown based on cryptographic arguments

[12] that such modes can effectively prevent birthday attacks and

diffuse patterns in the plaintext better. The traditional modes, CBC

for example, does not satisfy this property. Further, error propagating

modes are better matched to the progressive decoding dependencies

that already exist in a generalized scalable bit-stream.

In particular, we use a recently proposed family of error

propagating modes – called Accumulated Block Chaining (ABC)

[12], with roots in Campbell’s Infinite Garble Extension (IGE) mode

[13]. In order to ensure that the ciphertext has the same length in bits

as the plaintext, a method called ciphertext stealing originally

proposed in [14] is adopted at the end of the logical unit. A LUE

based on ABC with ciphertext stealing is shown in Fig. 4. The initial

state is given by Sin = {H–1, C–1}. Let the plaintext be (P0,P1,…,Pn–1,

Pn), where P0 through Pn-1 are full blocks (64 or 128 bits depending

on the size of the block cipher Ek) and Pn be a final short block. Let

the corresponding ciphertext be (C0, C1,…, Cn–1, Cn), where Cn is

short. The encryption steps are:

Hi = h(Hi–1) Pi, Ci=Ek(Ci–1 Hi) Hi–1, i=0,1,…,n–2

Hn-1 = h(Hn–2) Pn–1, Cn||C’=Ek(Cn–2 Hn–1) Hn–2

Hn||H’ = h(Hn–1) Pn||0, Cn–1=Ek(Cn||C’ Hn||P’) Hn–2

h(.) is a simple function, ex. h(X)=X or h(X)=X>>1 (>> denoting

circular shift). The case h(X)=0 corresponds to the IGE mode [13].

The last two lines of the above equations implement ciphertext

stealing [14]. Here || denotes concatenation of two short blocks to

obtain a full sized block. The first has the same length as Pn. P’ is a

padding pattern known to both encrypter and decrypter based on the

length of Pn. C’ and H’ are not transmitted. The decryption steps are:

Hi =Dk(Hi–1 Ci) Ci–1, Pi = h(Hi–1) Hi, i=0,1,…,n–2

Hn||C’=Dk(Cn–1) Cn||P’, Hn–1 =Dk(Hn–2 Cn||C’) Cn–2

Pn–1 = h(Hn–2) Hn–1, Pn||H’ = h(Hn–1) Hn||0

The ending state of the LUE propagated for encrypting/decrypting

successive logical units in each dimension is: Sout = {Hn–1, Cn–1}.

Although we show explicitly only one mode that arguably provides

the strongest encryption for a generalized scalable bit-stream, any of

the simpler modes (CBC etc.) or variations thereof can be used just as

well, with appropriate improvisations to handle initial and end states.

Instead of block ciphers, stream ciphers can be used for the LUE as

well. In this case, the internal state of the pseudo-random key-stream

generator is initialized with Sin, and at the end of encryption of a

logical unit, the end interrnal state is propagated forward as Sout.

Multi-dimensional state propagation still works as in Fig. 3.

4. IMPLEMENTATION USING MPEG-21 DIA

In this section, we present an actual implementation of a format-

independent encryption/decryption engine driven by metadata

standardized recently under MPEG-21 DIA.

To encrypt a generalized scalable bit-stream to allow arbitrary

adaptations, the only information that the encrypter needs are the

model parameters, the locations of the actual bit-stream segments that

each logical unit map to, and the locations of the updateable fields.

Because this is a subset of the information needed for adaptation of a

scalable bit-stream, it is obvious that some of the DIA descriptors can

be re-used for encryption. A DIA description called the Bit-stream

Syntax Description (BSD) and its variant the generic BSD (gBSD)

provides the high-level syntax of a bit-stream. The exact adaptation

operation is modeled and conveyed by means of an XML

transformation applied to the (g)BSD. While the XML

transformation language is non-normative in DIA, a model based

transformation entitled BSD Transformation Instructions (BSDTrI)

was proposed [15][16] for scalable bit-streams during the standard

development process that explicitly provided Delete and Update

Instructions as in Section 2. The gBSD and the BSDTrI together

convey the information necessary for a format-independent

encryption/decryption engine to encrypt/decrypt a generalized

scalable bit-stream in a multi-dimensional progressive manner.

Sout(1,2)[n]

Sout(1,1)[n]

Sout(0,2)[n]
0,1

0,0

0,2

1,1

1,0

1,2

2,1

2,0

2,2

Logical model

Adaptation unit n+1

LUE(0,0)[n] Sin(0,0)[n]

LUE(0,1)[n]

LUE(1,0)[n]

LUE(0,2)[n] LUE(1,2)[n]

LUE(2,1)[n]

LUE(2,2)[n]

LUE(1,1)[n]

LUE(2,0)[n]

Sin(0,1)[n]

Sin(0,2)[n]

Sout(0,1)[n]

Sout(0,0)[n] Sout(1,0)[n]

Sout(2,2)[n]

Sout(2,1)[n]

Sout(2,0)[n]

Sin(0,0)[n+1] Sin(1,0)[n]

Sin(1,1)[n]

Sin(1,2)[n]

Sin(2,0)[n]

Sin(2,1)[n]

Sin(2,2)[n]

0,1

0,0

0,2

1,1

1,0

1,2

2,1

2,0

2,2

Logical model

Adaptation unit n

Fig. 3 Multi-dimensional state propagating encryption for generalized scalable bit-streams. A 2-dim example is shown. LUE(i,j)[n] is the

Logical Unit Encrypter for the (i,j)th logical unit of adaptation unit n. It is implicit here that each LUE takes in a logical unit plaintext having a

specified length and yields the corresponding ciphertext based on a key.

II - 1035

➡ ➡

The overall encryption-adaptation-decryption chain based on DIA

descriptions is shown in Fig. 5. The bit-stream originating from a

server is associated with a variety of metadata to enable encryption

and adaptation. Among them, the ones processed by the Encryption

engine are the gBSD and the BSDTrI. Note that because the

encryption is length preserving, the gBSD and the BSDTrI remain

the same for both un-encrypted and encrypted content. The gBSD

and the BSDTrI along with other DIA descriptions [10], for instance

AdaptationQoS (AQoS), Universal Constraints Description (UCD)

and Usage Environment Descriptions (UED), are next processed by

a mid-stream format-independent adaptation engine [8] to yield an

adapted but encrypted bit-stream as well as the corresponding

adapted gBSD, denoted gBSD’. gBSD’ and BSDTrI are processed

by a decryption engine to yield an adapted clear bit-stream.

The gBSD and BSDTrI driven encryption/decryption engine

developed use the 128 bit AES [17] block cipher with a 128 bit key

in ABC/IGE modes. The encryption-adaptation-decryption chain was

tested on various scalable formats, including: (a) MPEG4 Visual

Elementary Stream with temporal scalability using B-VOPs in a 1-

dim scalability structure; (b) MPEG4 Visual Texture Coding with

spatial and SNR scalability in a 2-dim scalability structure; (c)

JPEG2000 [1] in various progression modes, having spatial, SNR

and color scalability in a 3-dim scalability structure. (Precinct or Tile-

based ROI scalability is not covered in this paper); (d) MC-EZBC [2]

– a fully scalable video format having simultaneous temporal, spatial

and SNR scalability in a 3-dim scalability structure.

All these use cases were tested for format-independent adaptation

during the course of development of the DIA standard. The

JPEG2000 and MC-EZBC use cases have been reported in [8]. In the

current work, the adaptation operation is preceded by the encryption,

and followed by decryption operation. The final adapted bit-stream

after decryption was found to be correctly decodable in all cases.

5. REFERENCES

[1] D. S. Taubman, M.W. Marcellin, “JPEG2000: Image Compression

Fundamentals, Standards and Practice,” Kluwer Acad. Pubs, 2002.

[2] S. –T. Hsiang, J. W. Woods, “Embedded video coding using invertible

motion compensated 3-D subband/wavelet filter bank,” Signal

Processing: Image Communication, vol. 16, pp. 705-24, May 2001.

[3] S. J. Wee, J. G. Apostolopoulos, “Secure scalable video streaming for

wireless networks,” Proc. IEEE Int. Conf. Acoustics, Speech and

Signal Proc., vol. 4, pp. 2049–2052, May 2001.

[4] S. J. Wee, J. G. Apostolopoulos, "Secure scalable streaming enabling

transcoding without decryption," Proc. IEEE Int. Conf. Image

Processing, vol. 1, pp. 437–440, Oct. 2001.

[5] S. J. Wee, J. G. Apostolopoulos, "Secure scalable streaming and secure

transcoding with JPEG-2000,” Proc. IEEE Int. Conf. Image

Processing, Sept. 2003.

[6] D. Mukherjee and A. Said, "Structured Scalable Meta-formats (SSM)

for Digital Item Adaptation," Proc. SPIE, Internet Imaging IV,

vol. 5018, pp. 148-67, Jan 2003.

[7] D. Mukherjee, P. Chen, S-T. Hsiang, J. Woods, and A. Said, "Fully

Scalable Video Transmission using the SSM Adaptation Framework,"

Proc. SPIE, Visual Commun. and Image Proc., vol. 5150, July 2003.

[8] D. Mukherjee, G. Kuo, S. –T. Hsiang, S. Liu, A. Said, “Format-

independent scalable bit-stream adaptation using MPEG-21 DIA,”

Proc. IEEE Int. Conf. Image Processing, Singapore, Oct 2004.

[9] J. Bormans, J. Gelissen, A. Perkis, “MPEG-21: The 21st century

multimedia framework”, Signal Processing Mag., IEEE, Volume 20,

Issue 2, pp. 53 – 62, March 2003.

[10] “ISO/IEC 21000-7 FDIS Part 7: Digital Item Adaptation,” ISO/IEC

JTC 1/SC 29/WG 11/N6168, Dec 2003, Hawaii, USA.

[11] G. Panis, A. Hutter, J. Heuer, H. Hellwagner, H. Kosch, C. Timmerer,

S. Devillers, M. Amielh, “Bitstream syntax description: A tool for

multimedia resource adaptation within MPEG-21,” Signal Processing:

Image Communication, Special Issue on Multimedia Adaptation, vol.

18, pp. 721-747, Sep 2003.

[12] L. R. Knudsen, “Block chaining modes of operation,” Report in

Informatics No. 207, Dept. of Informatics, University of Bergen,

Norway, Oct 2000.

[13] C. Campbell, “Design and Specification of Cryptographic capabilities,”

D. Barnstad, Ed., National Bureau of Standards Special Pub., US

Dept. of Comm., pp. 54-66, Feb 1978.

[14] J. Daeman, “Cipher and hash function design,” Ph.D. thesis, Katholieke

Universiteit Leuven, Mar 1995.

[15] D. Mukherjee, G. Kuo, S. Liu, G. Beretta “Model-based lightweight

BSD Transformation Instructions and Reserved Marker Token

Formats,” ISO/IEC JTC1/SC29/WG11 MPEG2003/M9772, July 2003.

[16] D. Mukherjee, H. Wang, S. Liu, “On BSD Transformation Instructions

– Streaming implementation and updates,” ISO/IEC JTC1/SC29/WG11

MPEG2004/11091, July2004.
[17] “Specification for the Advanced Encryption Standard (AES),” Federal

Information Processing Standards, Publication 197, Nov 2001.

Sin

H–1

C–1

+

Ek

C0

P0

h(.)

+

+

P1

+

Ek

C1

h(.)

+

+

H0

+

Ek

Cn||C’

h(.)

+

+

Pn-1

H1 Hn-2

Cn-2

Hn-1

Pn||0

h(.) +

Ek

+

Cn-1

Sout

Cn-1

Hn-1

Hn||H’

Hn||P’

Ek: Block cipher

with key k

Fig. 4 LUE based on Accumulated Block Chaining (ABC) mode. When h(X)=0, ABC becomes Infinite Garble Extension (IGE) mode.

gBSD+BSDTrI

Server

Encryption Engine

(format-independent)

Adaptation Constraints (UCD/UED)

Encryption Key Decryption Key

Bit-stream

Adaptation Engine

(format-independent)

Decryption Engine

(format-independent)

AQoS/Other

gBSD’+BSDTrI

AQoS/Other

IV IV

Fig. 5 Format-Independent Encryption-Adaptation-Decryption chain

based on MPEG-21 DIA descriptions. Initialization vectors (IV) that

need to be sent to the decryption engine can be integrated into the

gBSD during encryption.

II - 1036

➡ ➠

