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ABSTRACT 

Secure format-independent adaptation of bit-streams during delivery 

is becoming increasingly important to cope with content piracy while 

still accommodating diverse networks, terminals and formats. 

Generalized scalable bit-streams are particularly advantageous in this 

regard, since they enable a variety of efficient and secure adaptations. 

Further, by associating such a bit-stream with appropriate metadata, 

such as those standardized in MPEG-21 Part 7 entitled Digital Item 

Adaptation (DIA), the adaptation process can be fully format-

independent. In this paper, to maximally secure a generalized scalable 

bit-stream while allowing arbitrary encrypted domain adaptations, 

strong progressive encryption methods are extended to multiple 

dimensions. Further it is shown that by appropriate modeling of such 

bit-streams and re-use of some DIA descriptions, the encryption and 

decryption engines themselves can be entirely metadata-driven and 

format-independent. This leads to end-to-end format-independent 

secure and adaptive delivery architectures for scalable bit-streams. 

1. INTRODUCTION

To improve multimedia content accessibility and to maximize 

experience commensurate with diverse and dynamic terminal and 

network capabilities and conditions, as well as individual preferences, 

it is essential to adapt multimedia content in the delivery path to end 

consumers. At the same time, unauthorized access to the content 

during distribution must be prevented to protect the rights of 

legitimate content owners. The solution is to use encryption methods 

that allow possibly untrusted adaptation engines in the delivery path 

to adapt content in the encrypted domain.  A third factor is that the set 

of rich media content formats to be delivered is growing fast. This 

justifies a drive towards delivery infrastructure components, such as 

adaptation or encryption/decryption engines or modules thereof that 

use a universal processing model – which do not need frequent 

upgrades to support new formats and can even support proprietary 

ones. This is enabled by associating the content with standardized 

metadata that is small enough to make delivery alongside the content 

feasible, and not detailed enough to leak information about the 

content from a security stand-point.  

To satisfy the triple needs for adaptability, security and format-

independence during delivery, scalable bit-streams [1][2] appear 

promising. From the progressive dependencies of a scalable bit-

stream it follows that secure adaptation is possible by use of 

progressive encryption techniques, as shown in [3][4][5]. However, 

because scalable bit-streams frequently contain multiple dimensions 

of scalability, it is necessary to extend progressive encryption to 

handle multi-dimensional dependencies. 

In prior work [6][7][8], format-independent metadata-driven 

adaptation of generalized scalable bit-streams was reported. Recently, 

such metadata has been standardized in Part 7 of the emerging 

MPEG-21 standard [9] entitled Digital Item Adaptation (DIA) [10]. 

In this work, we show that some of the same metadata enables the 

encryption/decryption processes to be format-independent as well. In 

combination this yields secure and adaptive delivery architectures for 

scalable bit-streams, where the operation of all encryption, adaptation 

and decryption engines in the delivery path rely solely on incoming 

metadata and not on pre-knowledge of the format.  

Fig. 1 shows a conceptual model for such a delivery architecture. A 

scalable bit-stream originating from a server is encrypted by an 

encryption engine based on associated metadata and a key provided 

by a license server. The encrypted content and the unencrypted 

metadata is then transmitted over an insecure channel, where both are 

adapted possibly multiple times, by adaptation engines based on 

adaptation constraints specified as in [6][7][8][10] derived from 

network and terminal capabilities, conditions and preferences. 

Finally, the decryption engine decrypts the encrypted content based 

on currently associated metadata and recipient’s key, and delivers a 

compliant bit-stream to an authorized recipient. Note that Fig. 1 does 

not show initialization vectors (IV) that many encryption schemes 

use. The IVs are typically generated randomly and conveyed to the 

decryption engine in the clear. In Fig. 1, they would be included in 

the metadata output from the encryption engine. 

In the rest of the paper, we first present adaptation models for fully 

scalable bit-streams, and then derive the principles and present some 

instances of multi-dimensional progressive encryption of such bit-

streams. Finally, an implementation of encryption and decryption 

engines using MPEG-21 DIA descriptions is reported. 

2. MODELING SCALABILITY 

For a scalable bit-stream, the bulk of the adaptation task is deletion of 

bit-stream segments, which is often followed by update operations on 

a few bit-stream fields as required for format compliance. In this 

section, the delete and update operations are modeled and examined. 

2.1. Delete

The inherent dependencies in a generalized scalable bit-stream, lead 

to a universal logical model for all scalable bit-streams, referred to as 
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Fig. 1 Format-independent delivery architecture. 
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the SSM model, proposed in [6][7][8]. This model constrains how 

segments are deleted during adaptation. 

According to a simplified version of this model, the data in an 

elemental scalable bit-stream is organized in sequentially processed 

units called adaptation units, on which adaptation decisions are made 

and applied. Examples of adaptation units are GOP, Frame, Tile, etc. 

Further, within each adaptation unit, the data is organized in a logical 

hypercube, with a variable number of dimensions. If there are L

dimensions of scalability in each adaptation unit, and the ith

dimension of the nth adaptation unit contains li[n] layers, we can say 

that the data in the nth adaptation unit consists of l0[n] l1[n] … lL–

1[n] logical data segments B(j0, j1, …, jL-1)[n], ji=0,1,…, li[n]–1, 

i=0,1,…, L–1, called logical units, arranged in a hypercube. A logical 

unit may consist of any number of contiguous bit-stream segments 

located arbitrarily in the actual bit-stream. Fig. 2 (a) shows the logical 

structure and mapping to the actual bit-stream for two adaptation 

units of a bit-stream. 

From the logical structure, generally speaking any arbitrary 

selection of layers can be deleted for each dimension, during 

adaptation. For simplicity we only consider fully scalable bit-streams, 

where layers can only be dropped from the outer ends for each 

dimension. Fig. 2(b) shows an adaptation of the bit-stream in Fig. 

2(a), where 3x2 and 2x3 logical hypercubes from the origin are kept 

for two adaptation units, the rest being deleted. Correspondingly, bit-

stream segments that the deleted logical units map to are deleted.  

From the above model for deletion, it follows that causality of the 

logical units must be maintained during encoding/encryption, so that 

a decoder/decrypter can handle adapted content. That is, to 

encode/encrypt logical unit B(j0, j1, …, jL–1)[n], the encoder/encrypter 

can only use information from logical units B(k0, k1, …, kL–1)[n], 

where ki ji for all i, and ki ji for at least one i. This would ensure 

that for any valid adaptation, the decoder/decrypter can still 

decode/decrypt the content unambiguously. 

2.2. Update 

Often in scalable bit-streams it is not just enough to delete logical 

units, but also perform other update operations on certain fields in the 

bit-stream, to ensure format-compliance. These fields are often of a 

fixed-length. For instance, there may be fields conveying information 

such as image/frame dimensions, number of layers included and so 

on, that need to be updated in the bit-stream after deletion of logical 

units. There may also be fields that specify lengths of certain bit-

stream segments or locations of other parts of the bit-stream that are 

likely to need updates when logical units are deleted. Further, there 

may be fields representing sequential counters, such as packet 

number or frame number (temporal reference) that also are likely to 

need updates when logical units are deleted.  

While the exact mechanism for obtaining correct updates is 

irrelevant for encryption, it is essential that these fields be left 

unencrypted, so that adaptation engines in the delivery path can 

modify these fields without affecting the decryption of the rest of the 

bit-stream. Fortunately, for most fully scalable bit-streams, these 

fields constitute a minor portion of the bit-stream, so that security 

breach is minimal. The light-shaded parts of the bit-stream in Fig. 

2(a) and (b) represent some update fields that are left unencrypted.  

3. ENCRYPTION SYSTEM 

The first step in encrypting a generalized scalable bit-stream is to 

obtain the encryptable plaintext with a known length in bits for each 

logical unit, by concatenating bit-stream segments corresponding to 

the logical unit while excluding updateable fields. The mapping from 

logical co-ordinates to corresponding bit-stream segments as well as 

the location of the update fields, required for this step is conveyed by 

means of a high-level syntax description metadata associated with the 

bit-stream. The encryptable plaintext for each logical unit is 

encrypted by a Logical Unit Encrypter (LUE) yielding a ciphertext 

having the same length in bits as the plaintext, which is then 

substituted into the bit-stream to create the secure bit-stream.  

While in principle, each logical unit can be encrypted 

independently, to ensure maximal security they must be encrypted in 

a multi-dimensional progressive manner, so that encryption and/or 

decryption of a given logical unit become impossible without 

encryption and/or decryption of logical units causal to it. Assume the 

LUE is associated with an initial state Sin, and on encrypting a 

plaintext P of specified length reaches an end state Sout, where in 

general Sout = f(Sin, P), f(.) being an arbitrary function. Then, 

progressiveness can be ensured by making the initial state Sin of the 

LUE for a given logical unit depend on the end states Sout of the LUE 

for previous logical units along each dimension. If Sin(j0, j1,…, jL–

1)[n] and Sout(j0, j1,…, jL–1)[n] denote binary initial and ending states 

of the LUE for the (j0, j1,…, jL–1)th logical unit plaintext for the nth

adaptation unit, then one can use: 

Sin(0, 0,…, 0)[n] =   IV[n]

Sin(j0, j1,…, jL–1)[n] = Sout(j0–1, j1,…, jL–1)[n]

 Sout(j0, j1–1,…, jL–1)[n] …

                                Sout(j0, j1,…, jL–1–1)[n],   ji=0,1,…, li[n]–1. 

Actual bit-stream

(a) Pre-adaptation logical model and actual bit-stream

Logical model

Adaptation Unit 0 Adaptation Unit 1

Logical model

Adaptation Unit 0 Adaptation Unit 1

(b) Post-adaptation logical model and actual bit-stream

Actual bit-stream

Fig. 2 Bit-stream example showing two adaptation units: (a) with 3x4 logical hypercubes each, (b) with 3x2 and 2x3 logical hypercubes, after 

adaptation of the bit-stream in (a). Dark-shaded logical units and segments are assumed deleted in (b). Light-shaded and cross-hatched segments 

correspond respectively to update fields and segments that are neither included in logical units nor are update fields.  
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It is assumed that Sout(j0, j1,…, jL–1)[n] = 0, when any ji<0. IV[n] is 

an initialization vector for the nth adaptation unit, typically generated 

randomly by an encrypter and sent in the clear to the decrypter. 

Alternatively, it can be generated by a counter synchronized at the 

decrypter. In many cases, since the logical unit with all zero co-

ordinates can always be assumed to be transmitted, it is possible to 

further propagate the states along adaptation units, using: 

Sin(0, 0,…, 0)[n+1] = IV[n+1] = Sout(0, 0,…, 0)[n], 

with periodic resynchronization with a newly generated IV at 

intervals of a group of adaptation units. Fig. 3 shows the above state 

propagation mechanism for a 2-dimensional logical model.  

Note that in a scalable bit-stream because the critical data is usually 

in the initial layers, to reduce complexity only a partial set of logical 

units B(j0, j1, …, jL–1)[n] with ji=0,1,…, min(mi, li[n])–1 can be 

encrypted and the rest left unencrypted. Here mi is the max number of 

layers to be encrypted for the ith dimension of each adaptation unit. 

For the design of the actual LUE, block ciphers operated in one of 

a variety of modes is considered. Cipher Block Chaining (CBC), 

Cipher Feedback (CFB), Output feedback (OFB), and Counter are 

some common modes of operation with several variants available for 

each. But for the strongest possible encryption we seek modes that 

are infinitely error propagating. In such modes, not only is the 

encryption operation progressive, but also any change in a ciphertext 

block makes it impossible to decrypt correctly the current and all 

future blocks. It has been shown based on cryptographic arguments 

[12] that such modes can effectively prevent birthday attacks and 

diffuse patterns in the plaintext better. The traditional modes, CBC 

for example, does not satisfy this property. Further, error propagating 

modes are better matched to the progressive decoding dependencies 

that already exist in a generalized scalable bit-stream.  

In particular, we use a recently proposed family of error 

propagating modes – called Accumulated Block Chaining (ABC) 

[12], with roots in Campbell’s Infinite Garble Extension (IGE) mode 

[13]. In order to ensure that the ciphertext has the same length in bits 

as the plaintext, a method called ciphertext stealing originally 

proposed in [14] is adopted at the end of the logical unit. A LUE 

based on ABC with ciphertext stealing is shown in Fig. 4. The initial 

state is given by Sin = {H–1, C–1}. Let the plaintext be (P0,P1,…,Pn–1,

Pn), where P0 through Pn-1 are full blocks (64 or 128 bits depending 

on the size of the block cipher Ek) and Pn be a final short block. Let 

the corresponding ciphertext be (C0, C1,…, Cn–1, Cn), where Cn is 

short. The encryption steps are: 

Hi = h(Hi–1) Pi, Ci=Ek(Ci–1  Hi)  Hi–1, i=0,1,…,n–2

Hn-1 = h(Hn–2) Pn–1, Cn||C’=Ek(Cn–2  Hn–1)  Hn–2

Hn||H’ = h(Hn–1) Pn||0, Cn–1=Ek(Cn||C’  Hn||P’)  Hn–2

h(.) is a simple function, ex. h(X)=X or h(X)=X>>1 (>> denoting 

circular shift). The case h(X)=0 corresponds to the IGE mode [13].  

The last two lines of the above equations implement ciphertext 

stealing [14]. Here || denotes concatenation of two short blocks to 

obtain a full sized block. The first has the same length as Pn. P’ is a 

padding pattern known to both encrypter and decrypter based on the 

length of Pn. C’ and H’ are not transmitted. The decryption steps are: 

Hi =Dk(Hi–1 Ci)  Ci–1, Pi = h(Hi–1) Hi, i=0,1,…,n–2

Hn||C’=Dk(Cn–1)  Cn||P’, Hn–1 =Dk(Hn–2 Cn||C’)  Cn–2

Pn–1 = h(Hn–2)  Hn–1, Pn||H’ = h(Hn–1)  Hn||0 

The ending state of the LUE propagated for encrypting/decrypting 

successive logical units in each dimension is: Sout = {Hn–1, Cn–1}.

Although we show explicitly only one mode that arguably provides 

the strongest encryption for a generalized scalable bit-stream, any of 

the simpler modes (CBC etc.) or variations thereof can be used just as 

well, with appropriate improvisations to handle initial and end states.  

Instead of block ciphers, stream ciphers can be used for the LUE as 

well. In this case, the internal state of the pseudo-random key-stream 

generator is initialized with Sin, and at the end of encryption of a 

logical unit, the end interrnal state is propagated forward as Sout.

Multi-dimensional state propagation still works as in Fig. 3. 

4. IMPLEMENTATION USING MPEG-21 DIA 

In this section, we present an actual implementation of a format-

independent encryption/decryption engine driven by metadata 

standardized recently under MPEG-21 DIA. 

To encrypt a generalized scalable bit-stream to allow arbitrary 

adaptations, the only information that the encrypter needs are the 

model parameters, the locations of the actual bit-stream segments that 

each logical unit map to, and the locations of the updateable fields. 

Because this is a subset of the information needed for adaptation of a 

scalable bit-stream, it is obvious that some of the DIA descriptors can 

be re-used for encryption. A DIA description called the Bit-stream 

Syntax Description (BSD) and its variant the generic BSD (gBSD) 

provides the high-level syntax of a bit-stream. The exact adaptation 

operation is modeled and conveyed by means of an XML 

transformation applied to the (g)BSD. While the XML 

transformation language is non-normative in DIA, a model based 

transformation entitled BSD Transformation Instructions (BSDTrI) 

was proposed [15][16] for scalable bit-streams during the standard 

development process that explicitly provided Delete and Update 

Instructions as in Section 2. The gBSD and the BSDTrI together 

convey the information necessary for a format-independent 

encryption/decryption engine to encrypt/decrypt a generalized 

scalable bit-stream in a multi-dimensional progressive manner. 
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Fig. 3 Multi-dimensional state propagating encryption for generalized scalable bit-streams. A 2-dim example is shown. LUE(i,j)[n] is the 

Logical Unit Encrypter for the (i,j)th logical unit of adaptation unit n. It is implicit here that each LUE takes in a logical unit plaintext having a 

specified length and yields the corresponding ciphertext based on a key. 
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The overall encryption-adaptation-decryption chain based on DIA 

descriptions is shown in Fig. 5. The bit-stream originating from a 

server is associated with a variety of metadata to enable encryption 

and adaptation. Among them, the ones processed by the Encryption 

engine are the gBSD and the BSDTrI. Note that because the 

encryption is length preserving, the gBSD and the BSDTrI remain 

the same for both un-encrypted and encrypted content. The gBSD 

and the BSDTrI along with other DIA descriptions [10], for instance 

AdaptationQoS (AQoS), Universal Constraints Description (UCD) 

and Usage Environment Descriptions  (UED), are next processed by 

a mid-stream format-independent adaptation engine [8] to yield an 

adapted but encrypted bit-stream as well as the corresponding 

adapted gBSD, denoted gBSD’. gBSD’ and BSDTrI are processed 

by a decryption engine to yield an adapted clear bit-stream.  

The gBSD and BSDTrI driven encryption/decryption engine 

developed use  the 128 bit AES [17] block cipher with a 128 bit key 

in ABC/IGE modes. The encryption-adaptation-decryption chain was 

tested on various scalable formats, including: (a) MPEG4 Visual 

Elementary Stream with temporal scalability using B-VOPs in a 1-

dim scalability structure; (b) MPEG4 Visual Texture Coding with 

spatial and SNR scalability in a 2-dim scalability structure; (c) 

JPEG2000 [1] in various progression modes, having spatial, SNR 

and color scalability in a 3-dim scalability structure. (Precinct or Tile-

based ROI scalability is not covered in this paper); (d) MC-EZBC [2] 

– a fully scalable video format having simultaneous temporal, spatial 

and SNR scalability in a 3-dim scalability structure. 

All these use cases were tested for format-independent adaptation 

during the course of development of the DIA standard. The 

JPEG2000 and MC-EZBC use cases have been reported in [8]. In the 

current work, the adaptation operation is preceded by the encryption, 

and followed by decryption operation. The final adapted bit-stream 

after decryption was found to be correctly decodable in all cases. 
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