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ABSTRACT

In this paper, we present a new adaptive filtering method of ei-
ther the additive noise or the multiplicative noise. The proposed
method is stated with a differential equation of temporal evolution
of the problem of interest. It achieves an improvement of the effi-
ciency of the well-known iterated Lee filter in the spatial domain.
Mainly, it incorporates the local determination of the optimal re-
gions which are subsequently used to estimate the different local
statistics involved in the filtering method. This estimation is car-
ried out differently according to the nature of the processed pixel.
An adapted decisional criteria indicates if the pixel belongs either
to a contour or to an homogeneous zone, following the idea used in
the classical anisotropic methods. Then, the efficiency of the pro-
posed method, for which we can prove existence and uniqueness
of the solution, is assessed on several images degraded artificially.
The results are compared to the main used filters in order to con-
firm the theoretical waitings.

1. INTRODUCTION

The numerical images are often interfered by perturbation phe-
nomena either due to the experimental conditions during the acqui-
sition or to the acquisition system itself. These perturbations gen-
erate degradations in the observed image that penalize the subse-
quent processing operations such as segmentation, analysis and its
interpretation. It is therefore necessary to perform a pre-treatment
on the observed image in order to best reconstruct the original im-
age. In this paper, we only consider the most common cases of
filtering, in other words, the restoration of an image degraded by
either an additive noise, or a multiplicative noise. The problem
is difficult to resolve because a particular luminous intensity at an
image pixel, can give rise to an infinite number of possible com-
bination of the original image and the noise. More, noisy images
exhibit a strong variability from one pixel to another. An observed
local intensity variation might be due either to the noise or to an
edge. Obviously, edges are significant features in images as they
carry important information for the subsequent image processing
tasks. They have to be recovered without signal distortion.

Following the idea developed by the classical anisotropic meth-
ods, we propose to characterize each pixel as belonging either to
a contour or an homogeneous zone. However, the great differ-
ence with these methods is that we use integral operators instead
of spatial derivatives for filtering. In all the anisotropic methods,
the pixels of contour are implicitly distinguished from the others
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by using the gradient. We can mention the total variation based
filters [12] [5], the Perona-Malik model [14] [4] [7] [16] and the
Shock-filters [13] [2]. In the method of Alvarez and al [1], the
pixels of contour are simply detected with the help of a contrast
threshold. The main difficulty consists on exactly determining this
contrast threshold. Unfortunately, it is not unique but depends on
the luminous intensity of the reference pixel. A previous study
has been realized about this subject by Chehdi and al [6]. It led
to the visual perception function or function of the eye sensitiv-
ity to contrasts. This function gives in an adaptive manner the
value of the contrast threshold to distinguish two pixels accord-
ing to their luminous intensity. The method we propose involves
a soft-switching edge detection scheme to examine whether a lo-
cal intensity variation corresponds to an edge or not, followed by
invoking proper combined traditional filtering operations. The de-
tection of contour is achieved by means of an operator that thresh-
olds the gradient magnitude of the smoothed image by the value
of the visual perception function at the considered pixel. The de-
tection performance is not related to the accurate determination of
several thresholds. The paper is organized as follows: In section
2, we briefly recall the theory presented by Lee [10]. In section
3 we give the reader a better understanding of the proposed fil-
ter. We precise the key lines to be used to show the existence and
the uniqueness of the solution of the considered differential equa-
tion. In section 4, analysis of the results on a well-known real data
artificially corrupted highlights the efficacy of the approach. We
quantitatively evaluated image quality after spatial filtering by the
well-known criterion : the mean absolute error (MAE), the mean
square error (MSE) and the maximal error (ME) and the Peak
Signal-to-Noise-Ratio (PSNRdB). After a last refinement of the
proposed method, we are concluding in section 5.

2. THE LEE FILTER

In the optimal methods, we can mention the filter presented by Lee,
whose performances have been evaluated. In order to attenuate the
noise while preserving the contours, Lee proposes an optimal filter
completely determined by its gain K. If we note v the original
image and u0 the observed image on a compact support Ω, then
the observation equation for the additive noise hypothesis, is given
by :

u0 = v + b (1)

where b is an additive noise non correlated with v such that its
mean value E[b] = 0 and its variance var[b] = σ2.

For the multiplicative noise hypothesis, if we note u∞ the
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original image, then the observation equation writes :

u0 = u∞ × n (2)

where n is a multiplicative noise, non correlated with the origi-
nal image u∞, and such that E[n] = 1 and var[n] = σ2

n. Kuan
proposes in [9] a pseudo-observation equation to adapt the Lee ad-
ditive filter to the multiplicative model:

u0 = u∞ + b′ = u∞ + u∞ × (n − 1) (3)

where b′ is the additive pseudo-observation noise, non correlated
with u∞ but dependent of u∞ such that E[b′] = 0 and var[b′] =
E[u2

∞]var[n].
In the two cases, the filter is completely determined by the

gain K:
FLee[u0] � E[u0] + K (u0 − E[u0]) . (4)

The statistics involved in the calculation of the local gain are es-
timated from pixels belonging to the neighborhood. As a result,
the precised selection of pixels is all the more important for the
performance of the filter. To take into account the local configu-
ration of the image and to preserve the contours, the gain must be
locally calculated from a window with a reduced size R × R cen-
tered on (i, j) the pixel to process. In the following, a pixel will
be noted (i, j) in the discrete case, and (x, y) in the continuous
case. The Lee filter presents the main shortcoming to calculate
the local statistics on predefined masks. On the contrary, in the
filtering methods based on partial differential equations, the pix-
els belonging to contours are differently processed from the other
pixels.

3. INTEGRO-DIFFERENTIAL STATEMENT OF THE
ITERATED LEE FILTER

3.1. Evolution equation

We call evolution equation of the iterated Lee filter the differential
equation defined by the following equation.

u̇(t) + u(t) = P[u(t), t] �(
1 − KΦ[u(t), t]

)
EΦ[u(t), t] + KΦ[u(t), t] u(t)

(5)

where u̇ is the temporal derivative of u and P[u, t] is a perturba-
tion operator of the identity operator [8]. If we note EΦ[u, t] and
varΦ[u, t] the local mean and the local variance, then the local gain
KΦ[u, t] for the additive model is defined by:

KΦ[u, t] �
(

1 − σ(t)2

varΦ[u, t]

)+

(6)

For the multipicative model, the gain is defined by:

KΦ[u, t]× �
(

1 − E[u2, t]

varu, t

σn(t)2

1 + σn(t)2

)+

(7)

The variance of the noise is explicitly used in the calculation of the
gain. So, its evaluation during successive iterations is an important
factor for the performance of the filter. We wish to improve the ba-
sic understanding of the image filtering process and to determine
how it is affected by the noise. The following modeling 8 is pro-
posed : The effective variance of noise at the time instant t is given
by :

σ(t) �
[
TV(u0)

−1TV(u(t))
]
σ (8)

where TV is the total variation norm and such that g∗u is as closed
as possible to u. As the evolution equation provides a smoothing
filter, the TV-norm of the solution is probably decreasing. So we
make the assumption that the standard deviation of the noise is
decreasing proportionally to the TV-norm. We now consider the
iterated sequence of Lee corresponding to the successive iterations
of the Lee filter on the observed image u0 defined by un+1 =
FLee[u

n] and u0 = u0. If we firstly assume that the temporal
discretization step takes the particular unit value ∆t = 1, then
we can write the recurrence relation of the iterated Lee sequence
under the following form:

un+1
i,j − un

i,j

∆t
=

(
1 − K[un]i,j

) (
E[un]i,j − un

i,j)
)

(9)

where K[un]i,j is the local gain of the image un and E[un]i,j the
local mean computed within the selected Lee mask centered in
(i, j).

3.2. Local and Adaptive Determination of the Supports

As precised above, the proposed improvement consists on deter-
mining more relevant local support used to compute the local statis-
tics according to the nature of the pixels. We can model the local
support of any local statistics calculation by an operator Φ[u, t]
called the local statistical kernel that depends on the image u and
the abstract time t. This operator is choosen such that Φ[u, t](x, y;
x′, y′) is equal to 1 if (x′, y′) belongs to the local support K(x, y)
and vanishes if (x′, y′) is sufficiently far to K(x, y). Now, follow-
ing the idea introduced before by Alvarez and al in [1], we define
the total local statistical kernel Φ[u, t] of the proposed method:

Φ[u, t] � Θ[u, t]Φ1|2[u, t]τ [W ] +
(
1 − Θ[u, t]

)
τ [w] (10)

where the operator Θ[u, t] and Φ1|2[u, t] are defined by :

Θ[u, t](x, y) � H

(∫
Ω

Φ1|2[u, t](x, y; x′, y′)dx′dy′ − L

)
,

(11)

Φ1|2[u, t] � Ψ[u]Φ1[u] +
(
1 − Ψ[u]

)
Φ2[u, t] (12)

where w (resp. W ) is a truncation function on the square [−r/2,
+r/2] (resp. [−R/2, +R/2]). Then, τ [w] (resp. τ [W ]) is the
translatory motion operator of w (resp. W ) to the current posi-
tion (i.e. τ [w](x, y; x′, y′) = w(x − y, x′ − y′)). The use of
τ [w] was introduced by Lee [11] for the 2σ filter. The underlying
idea is to adapt the kernel Φ[u, t] in order to eliminate the isolated
pixels. This occurs when the number of selected pixels in the win-
dow of size R × R is lower than some threshold L in accordance
with the 2σ filter. This threshold depends of course on the size
of the window : L < 4 if R = 7, L < 3 if R = 5, L = 1
if R = 3. Φ1|2[u, t] realize through the edge detector Ψ[u] the
switching between the local statistical kernels Φ1[u] and Φ2[u, t]
defined below. They have been used separately in the past: the
first one Φ1[u] for pixels belonging to contours, the second one
Φ2[u, t] for the pixels of the homogeneous zone.

The average selected smoothing technique filter described by
Asano and al [3], allows to disregard the pixels (x, y) ∈ Ω in the
considered local window whose contrast value |u(x, y)−u(x′, y′)|
is lower to the magnitude value of the discontinuity |�∇u(x, y)|.
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In other words, this filter enables to only take into account pix-
els whose contrast value is lower to the discontinuity magnitude.
Φ1[u] is then given by :

Φ1[u](x, y; x′, y′) �

H
(
|uσ(x′, y′) − uσ(x, y)| − |�∇uσ(x, y)|

)
.

(13)

Therefore, it correctly enhances the contours but does not smooth
sufficiently in the homogeneous zones.

The adaptive averaging filter described by Pomalaza-Raes and
al in [15] only depends on the variance of the noise. For each pixel
(x, y) ∈ Ω, we calculate the mean average value of the luminous
intensity of pixels (x′, y′) ∈ Ω belonging to the considered lo-
cal window whose difference |u(x, y) − u(x′, y′)| is lower to a
threshold C. Φ2[u, t] is defined by :

Φ2[u, t](x, y; x′, y′) �

H
(
|uσ(x′, y′) − uσ(x, y)| − C[u, t](x, y))

)
.

(14)

with C[u, t](x, y) = S
(
2σ(t), f(uσ(x, y))

)
where S is a smooth

approximation of the supremum function. This filter designed to
eliminate additive noise is used in the 2σ filter developed by Lee
in [11]. It performs a good smoothing in the homogeneous zones
but sometimes introduces some distortions close to the contours.

In the proposed method, we decide to combine the two local
statistical kernels Φ1[u] and Φ2[u, t] through the selective process-
ing of the contour pixels and the other pixel. This is carried out
through the contour detection operator :

Ψ[u](x, y) � H
(
|�∇uσ(x, y)| − f(uσ(x, y))

)
(15)

where we denote f the regular approximation of the visual percep-
tion function. It returns a unit value if the pixel (x, y) is a contour
pixel and zero otherwise. The operator Ψ[u] allows to control the
switching between the filtering of a contour pixel and the filtering
of an homogeneous pixel.

Note that the local statistics EΦ[u, t], varΦ[u, t] in (5) are cal-
culated with the total local statistical kernel Φ[u, t].

The analysis of the evolution equation (5) allows us to prove
the existence and uniqueness of its solution. The definition of the
local statistical kernel Φ corresponds to a combination of integral
operators TΦ. If Φ ∈ C2 ∩ W 2,∞(Rm+n × Ω2, R) then TΦ ∈
C1(D(TΦ), L∞(Ω, R)), is Lipschitz and bounded on the centered
balls, where W s,p are the Sobolev spaces. This result insures us
that the perturbation satisfies three hypotheses such that to find a
solution of (5) is equivalent to find a fixed point of the sequence
U :

U [u](t) � e−t

(
u0 +

∫ t

0

es
P[u(s), s]ds

)
. (16)

Then, if u ∈ C1(R+, L∞(Ω, R)) is a solution of the problem (16)
then it satisfies :

∀t ∈ R
+, [u(t), u(t)] ⊂ [u0, u0]. (17)

where u = sup ess u and u = inf ess u. This is a direct conse-
quence of one of the hypothesis satisfied by the perturbation. The
problem (16) admits a unique solution u ∈ C1(R+, L∞(Ω, R)).
The demonstration follows the same scheme than that of the the-
orem of Cauchy-Lipschitz-Picard. We seek to show the conver-
gence of a sequence toward a fixed point where the Lipschitz con-
stant is obtained according to one of the hypothesis satisfied by the
perturbation and is independent of the current iteration.

However, we can refine the computation of the support by con-
sidering masks which better translate the local structure of the im-
age for pixels belonging to contours. The idea is to make use of
the level line passing by the processed pixel defining the mask.
Thus, we can obtain a fine structure that is composed of pixels,
the selection of which contributes to minimize the variance along
the line. Then, we apply the masks close to contours and keep ap-
plying the previous thresholding based mask in the homogeneous
zones [Lee+].

4. EXPERIMENTAL RESULTS

Experiments were carried out on different images. Among them,
we select the real image [boat] for its very thin details (fig. 1).
The degraded image has been processed by the classical Lee fil-
ter [Lee1], the iterated Lee filter [Lee2], the improved Lee filter
[Lee3], the TV Filter [TV] [5], and the refined Lee filter [Lee+].
The respective values of the four criteria, (MAE), (MSE), (ME),
(PSNRdB) while applying each retained filtering methods on the
two previous images are regrouped in table (tab. 1) and (tab. 2).
The results of the refined method [Lee+] are only presented for
the additive noise hypothesis. From a subjective viewpoint (visual
observation) the images processed by the improved and refined it-
erated filter seem to show a better quality (fig. 1), (fig. 2). We can
easily observe less residues, especially close to the contours. For
the classic or iterated Lee filter, we can on the other hand observe
the main default of this kind of filters by pointing at the penalyz-
ing effects induced by the use of predefined masks. Obviously, the
models can not correspond exactly with the local configuration of
the image, what translates by some destructive effects even though
the local gain introduced by Lee allows to limit these artifacts.
From an objective viewpoint, the modifications proposed for the
Lee filter seem to be efficient. The obtained values for the differ-
ent criterion generally confirm the visual impression with globally
lower errors for the proposed method.

Original image Degraded image σ = 12 [Lee3] - filtered image

1th iteration 3th iteration (c) final iteration

Fig. 1. Original, Degraded, Filtered Images - Edge detection on
the iterations of [Lee3] noise filtering on the σ = 12 noisy image
[boat]

For the additive noise hypothesis, the results of the last refine-
ment of the method are promising and slightly improve quality of
the finally obtained image.
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[Lee+] edge detection

Fig. 2. Filtering of the σ = 12 Noisy Image [boat] by the [Lee+]
Filter

[ME] [MAE] [MSE] [PSNRdB]

σ = 8 38 6.382 8.019 30.048
[Lee1] 35 4.419 5.900 32.714
[Lee2] 35 4.278 5.77 32.907
[TV] 80 4.115 5.679 33.046
[Lee3] 32 3.883 5.208 33.798
[Lee+] 33 3.824 5.114 33.955
σ = 10 48 7.962 9.994 28.136
[Lee1] 53 5.189 7.019 31.205
[Lee2] 43 4.980 6.81 31.468
[TV] 80 4.750 6.463 31.922
[Lee3] 37 4.508 6.107 32.415
[Lee+] 37 4.475 6.006 32.559
σ = 12 57 9.514 11.933 26.595
[Lee1] 53 5.874 7.981 30.090
[Lee2] 53 5.605 7.741 30.355
[TV] 75 5.485 7.351 30.804
[Lee3] 41 5.074 6.898 31.357
[Lee+] 47 5.041 6.763 31.528
σ = 14 67 11.051 13.858 25.297
[Lee1] 59 6.564 8.927 29.117
[Lee2] 59 6.199 8.576 29.465
[TV] 97 6.389 8.481 29.561
[Lee3] 57 5.682 7.697 30.405
[Lee+] 57 5.605 7.507 30.621

Table 1. Additive Noise Filtering on the Image [boat]

5. CONCLUSION

The method proposed in this paper presents an original statement
of the iterated Lee filter. It leads to the writing of a temporal evolu-
tion equation as a differential equation for which we prove the ex-
istence and the uniqueness of the solution. To take into account the
local configuration of the image and to preserve fine structures of
the image, it first determines a relevant estimate of the support used
to calculate the local statistics introduced in the differential equa-
tion. This is achieved by differentiating the pixels according to
their nature, either belonging to a contour or a homogeneous zone
following the idea developed with the classic anisotropic methods.
The obtained filter selects locally between a selective filter that
properly enhances the contours but does not sufficiently smooth
in the homogeneous zones and an adaptive filter, that conversely
performs a good smoothing in the homogeneous zones but some-
times introduces some distortions close to the contours. The se-
lective switching according the nature of the pixel is done through
the operator of contour detection. The efficiency of the method
is checked in simulation by comparison to the well-known bench-
marked filters.

[ME] [MAE] [MSE] [PSNRdB]

σ = 0.1 73 9.353 13.284 25.664
[Kuan1] 82 5.759 8.327 29.721
[Kuan2] 95 5.512 8.035 30.031
[Kuan3] 68 5.018 7.284 30.883
σ = 0.2 155 18.096 25.503 19.999
[Kuan1] 96 9.259 13.175 25.736
[Kuan2] 97 8.740 12.603 26.122
[Kuan3] 96 7.996 11.643 26.81
σ = 0.3 224 26.074 36.709 16.835
[Kuan1] 135 12.782 18.372 22.847
[Kuan2] 112 12.002 17.326 23.357
[Kuan3] 115 11.487 16.758 23.646

Table 2. Multiplicative Noise Filtering on the Image [boat]
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