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ABSTRACT

We present an approach to fingerprint image enhancement that re-
lies on detecting the fingerprint ridges based on the sign of the
second directional derivative of the digital image. A facet model
is used in order to approximate the derivatives at each image pixel
based on the intensity values of pixels located in a certain neigh-
borhood. The size of this neighborhood determines the scale of the
image details that are preserved. We develop a selection criterion
for the neighborhood size that aims to preserve minutiae details
and remove smaller details from the enhanced image. The experi-
mental results demonstrate the ability of the proposed approach to
preserve a large percent of the genuine minutiae in the enhanced
image.

1. INTRODUCTION

Fingerprints are graphical ridge patterns present on human fingers,
which, due to their uniqueness and permanence, are among the
most reliable human characteristics that can be used for people
identification [1]. A common hypothesis, confirmed by the experi-
ence accumulated during a century of forensic use of fingerprints,
is that certain local structures derived from the fingerprint ridges,
called minutiae, are able to capture the invariant and discrimina-
tory information present in the fingerprint image.

Several factors like the presence of scars, variations of the
pressure between the finger and acquisition sensor, worn artifacts,
the environmental conditions during the acquisition process, etc.,
can dramatically affect the quality of the acquired fingerprint im-
age. Since minutiae depend on fine details of the ridge pattern,
their extraction can become notoriously difficult if the “noise” gen-
erated by the factors described above is not substantially reduced.
The main goals of a fingerprint image enhancement algorithm are:
(i) to reduce the noise present in the image, and (ii) to detect the
fingerprint ridges. An input gray-scale fingerprint image is thereby
transformed by the enhancement algorithm into a binary represen-
tation of the ridge pattern, called binary ridge-map image.

In the method proposed by Ratha, et al. in [2] the image is
smoothed using a one-dimensional averaging mask oriented along
the local ridge orientation, and the fingerprint ridges are detected
as local minima of the gray level projection waveform along a scan
line perpendicular to the local ridge orientation. Jain, et al. [3] pro-
posed to accentuate local minima intensity values along a direction
normal to the local ridge orientation by convolving the fingerprint
image with two masks aligned to the ridge orientation. Subse-
quently, a binary ridge-map image is obtained by comparing the
intensity values of the pixels in the two convolved images with
a certain threshold value. Sherlock, et al. [4] proposed a direc-
tional Fourier domain filtering for fingerprint enhancement. They
design a set of 16 directional filters tuned on different orientations

between 0 and π. Applying each filter onto the entire fingerprint
image they obtain 16 filtered images. Next, the value of each pixel
in the enhanced image is selected from one of the 16 filtered im-
ages based on the ridge orientation in the neighborhood of that
pixel. Instead of designing filters tuned on corresponding spatial
frequency of each image region Willis and Myers proposed in [5]
to use as filter directly the magnitude of the Fourier transform of
the local image region. This magnitude already exhibits most of
the qualities required from a properly designed enhancement fil-
ter since it has a dominant component at the corresponding ridge
orientation and frequency, and on the other hand, due to the noise
irregularity it exhibits small other components.

The fingerprint image enhancement approach, proposed in this
paper, relies on the sign of the second direction derivative of the
image intensity surface. The image curvature is calculated in each
pixel along the direction orthogonal to the local ridge orientation,
following then to assign the pixels of positive curvature to the
ridges. A polynomial facet model is used to estimate the deriva-
tives of the discrete intensity surface of the image. According to
this model, the image curvature in each pixel is calculated based
on the intensity levels of several pixels located in a certain neigh-
borhood window of the pixel of interest. The size of this neigh-
borhood determines the size of image details that are preserved
after the operation. We propose a selection criterion for this neigh-
borhood size that ensures the preservation of minutiae features,
removing smaller image details that may generate false minutiae.

2. ESTIMATION OF IMAGE CURVATURE

A fingerprint image exhibits a quasi-periodic structure of alternat-
ing ridge and valley tracks. A cross section through several ridges
exhibits an almost sinusoidal profile of the gray level intensity,
where low (high) values correspond to pixels situated on ridges
(valleys). The discrimination between ridge and valley pixels can
be performed based on the sign of the second derivative of such
one dimensional sequence of intensity levels, the positive (neg-
ative) values of this derivative corresponding to ridges (valleys).
Based on this observation, we propose to detect the fingerprint
ridges in those image pixels where the second directional deriva-
tive along the direction orthogonal to the local ridge orientation is
positive.

Let g(i, j) denotes the value of the gray-level intensity in the
pixel (i, j) of the image, where i denotes the horizontal coordinate
that increases from left to right, and j denotes the vertical coor-
dinate that increases from bottom to up. Also, let θ ∈ [0, π) de-
notes the local ridge orientation with respect to the horizontal axis.
The second derivative of the intensity surface along the direction
v = [− sin θ cos θ]T , orthogonal to the local ridge orientation is
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given by

g′′
v(i, j) = g(2,0)(i, j) sin2 θ

+ g(0,2)(i, j) cos2 θ (1)

− g(1,1)(i, j) sin 2θ,

where g(p,q)(i, j) denotes the (p + q)th partial derivative of the
discrete intensity surface at site (i, j), p along the horizontal axis
and q along the vertical axis.

The second partial derivatives of the discrete intensity surface
can be approximated using a facet model [6]. This consists of
estimating a continuous and differentiable surface (facet) that fits
over the gray levels of the image pixels located in a neighborhood
of (i, j), following then to approximate the image derivatives in
(i, j) with the derivatives of this surface. Using a separable para-
metric model for the facet [7, 8], we obtain the approximation of
the (p, q) derivative

g(p,q)(i, j) ≈
L�

c,r=−L

fp,L(c)fq,L(r)g(i − c, j − r), (2)

where fp,L and fq,L are the impulse responses of 1D FIR filters of
length 2L+1, that act along the image rows and columns. A useful
property is that the filter coefficients do not depend on image data.
Consequently, they can be computed beforehand based solely on
the parametric model chosen for the facet. As an example, using
a 3rd order polynomial facet model, one can derive the following
formulas for the filter coefficients

f0,L(�) =
3(3L2 + 3L − 1 − 5�2)

(2L + 1)(2L − 1)(2L + 3)
,

f1,L(�) = [−5�(15L4 + 30L3 − 15L + 5 − 21L2�2

−21L�2 + 7�2)]/[L(L + 1)(2L + 1) (3)

×(L − 1)(2L − 1)(L + 2)(2L + 3)],

f2.L(�) =
30(3�2 − L2 − L)

L(L + 1)(2L + 1)(2L − 1)(2L + 3)
.

3. SELECTION OF THE APPROXIMATION ACCURACY

Maintaining a fixed parametric model for the facet, we can choose
the size of the approximation neighborhood around each pixel in
order to adjust the approximation accuracy. The smaller the neigh-
borhood size the better the approximation of the discrete inten-
sity levels of image pixels. Our goal is to select the size of the
approximation neighborhood (or similarly the approximation ac-
curacy), such that to ensure the preservation of genuine minutiae
details, and the deletion of smaller image details that may gener-
ate false minutia. In this section we develop a criterion that can
be used to select the best size of the approximation neighborhood
(i.e. (2L + 1) × (2L + 1)), among certain given candidates.

Noting that the minutiae details are features that have sizes
comparable with the ridge period, we approach the problem of se-
lecting the best neighborhood size indirectly, by developing first an
estimator of the ridge period based on second directional derivative
of the digital image. The accuracy of the proposed estimator de-
pends of the approximation neighborhood size. Accurate estimates
being obtained for those values of L which preserve details of the
same size as the ridge period and remove much smaller details.

Consequently, the variance of the proposed ridge period estimator
will be used to construct the neighborhood size selection criterion.

In the absence of noise, we may consider that the gray level
intensities along the orthogonal direction to the ridge orientation
are samples of the continuous function

f(x) = A cos

�
2π

τin
x + Φ

�
+ B, (4)

where τin denotes the local ridge period expressed in inch. The
constant factor B stands for the local average gray level intensity,
and A and Φ denote respectively the amplitude and the phase of
the sinusoidal wave.

Using the second derivative of (4) one can determine the ridge
period by noting that

τin = 2π

�
−f(x) − B

f ′′(x)

�1/2

, (5)

for any x where f ′′(x) �= 0.
A discrete signal g(n) = f(nT ), is obtained by sampling

the sinusoidal wave (4). The sampling period T depends on the
resolution used for image acquisition; for instance T = 0.002
inch if the image is acquired at a resolution of 500 dots per inch.
The discrete signal can be written as

g(n) = A cos

�
2π

τ
n + Φ

�
+ B, (6)

where τ = τin/T denotes the ridge period expressed in number
of pixels. Next, the second derivative of the discrete signal can be
approximated using, for instance, the filter f2,L from (3)

g′′(n) =

L�
�=−L

f2,L(�)g(n − �)

=

�
L�

�=−L

f2,L(�) cos

�
2π

τ
�

��
A cos

�
2π

τ
n + Φ

�
, (7)

where we used the properties
�L

�=−L f2,L(�) = 0, and f2,L(�) =
f2,L(−�), for any integer � ∈ [−L, L].

It is clear that in the discrete case we cannot determine the
ridge period as simple as in the continuous case. Nevertheless, the
ratio on the right hand side of (5) is still useful since it eliminates
the nuisance parameters A, and Φ. Therefore, given the discrete
signal g(n) and its second derivative g′′(n), we can calculate first
the value

Γ = −[g(n) − B]/g′′(n), (8)

for any n where g′′(n) �= 0, following then to determine τ as the
solution of the equation

L�
�=−L

f2,L(�) cos

�
2π

τ
�

�
= − 1

Γ
. (9)

Unfortunately, equation (9) is difficult to solve analytically,
except for the particular case when the ridge period is relatively
large in comparison with the length of the filter f2,L. In such a
case, using the first two terms of the Taylor series approximation
for the cosine function, we have that τ ≈ 2π

√
Γ.

In general however, this Taylor series approximation does not
stand, and hence we adopted a table lookup based solution. Noting
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that Γ is a monotonically increasing function of τ (for τ ≥ 2L),
and that the ridge period is typically between 3 and 20 pixels, we
calculate beforehand the values of Γ at τ ∈ {3, 4, . . . , 20} and
store them in a lookup table. Subsequently, for a given Γ the value
of the ridge period (τ ) stored in the nearest entry is delivered.

Until now we introduced the theoretical framework of our ap-
proach. For simplicity, we assumed an ideal sinusoidal model of
the ridge profile in the absence of noise, and hence the parameter Γ
took the same value at all n where g′′(n) �= 0. In practice, because
the ridge profile is not a perfect sinusoid, as well as because of the
presence of noise, we must estimate Γ from its observed values at
different samples n. The value of Γ observed at the n-th sample
(g′′(n) �= 0) is given by

γn = −g(n) − ḡ

g′′(n)
, (10)

where ḡ denotes the sample average of the observed data.
We assume that the N observed values of Γ are corrupted by

an independent identically distributed noise ηn

γn = Γ + ηn, 1 ≤ n ≤ N, (11)

whose distribution is approximated by Laplacian distribution (see
Fig. 1).
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Fig. 1. The estimated p.d.f. of ηn (thin line), and the theoretical
Laplacian p.d.f. (thick line). Both figures have been constructed
based on 5000 samples of a unity amplitude sinusoidal wave in
Gaussian noise of variance 0.5. The period of the sinusoidal wave
was 10 in (a), and 4 in (b), and the size of the filters used were
L = 5 in (a), and L = 2 in (b).

Consequently, the maximum likelihood (ML) estimate of Γ is
the median of the N observed values

Γ̂ = median{γ1, γ2, . . . , γN}, (12)

and the ML estimate of noise variance is given by

var(ηn) = 2

�
1

N

N�
n=1

|γn − Γ|
�2

. (13)

Let us now make some considerations about the approxima-
tion of the second directional derivative (1). This formula, carried
out for all samples of the discrete signal g, is equivalent with a
convolution between the signal and a certain 2D FIR filter. The
size of this filter (i.e., (2L+1)× (2L+1)) must be selected in ac-
cordance to the ridge period in order to obtain an accurate estimate

(a) (b)

(c) (d)

Fig. 2. Enhancement results and criterion values obtained with
different filter sizes: (a) original image, (b) L = 2, C = 4.3, (c)
L = 4, C = 0.8, and (d) L = 8, C = 1.3.

of the parameter Γ, and hence an accurate estimate of the ridge pe-
riod. To break this vicious circle, we note that the variance (13)
can be used as an indicator of the accuracy achieved in estimating
Γ. However, because filters of different sizes have different energy
values, denoted here by e(L), the variance (13) must be also nor-
malized accordingly in order to serve as a selection criterion for
the filter size. Alternatively, the filters (3) could be divided to their
Euclidean norm before usage, in which case e(L) ≈ 1.

Let L1 < L2 < · · · < LK denote K preselected values
of the parameter L, each of them being used to design a certain
set of filters (3). Applying these filters onto the given signal we
obtain K different approximations of g′′, and hence K different
sets of observations (10). Let {γ(k)

n ; 1 ≤ n ≤ N} denotes the
set of observations obtained using a filter of length 2Lk + 1, and
Γ̂(k) denotes the estimated value of parameter Γ in this case. The
selection criterion that we propose to minimize in order to select
an appropriate filter size is

Ck =
e(Lk)

N

N�
n=1

|γ(k)
n − Γ̂(k)|. (14)

4. EXPERIMENTAL RESULTS

Enhancement results, achieved with filters of different sizes, are
exemplified in Fig.2. Visually, the most accurate ridge segmenta-
tion result is obtained for L = 4, shown in Fig. 2(c). We note that
this is also well indicated by the value of the proposed criterion
(14), which is smaller in (c) than in the (b) and (d) cases of Fig. 2.

In the following experiments we employed a fingerprint en-
hancement algorithm based on K = 4 triplets of filters (3), de-
signed for L ∈ {2, 3, 4, 5}. The algorithm calculates K candidate
directional curvature images for a fingerprint. Next, it constructs

II - 987

➡ ➡



(1) (2)

(3) (4)

Fig. 3. Ground truth minutiae marked over four of the fingerprint
images used in experiments.

the final curvature image of the fingerprint by selecting blocks, of
16× 16 pixels, from different candidates, in accordance to the cri-
terion (14). Finally, the sign of the final curvature image is used to
distinguish between the ridge and valley regions of the fingerprint.

We evaluated the proposed algorithm based on its ability to
preserve the genuine minutia details and remove false minutiae
from the fingerprint image. For comparison we implemented also
the enhancement algorithm described in [8]. Each algorithm was
combined with the same minutiae extraction module, and the per-
formance have been measured based on the numbers of missing
and spurious minutiae after processing, using [4]:

Sensitivity = 1 − Missing minutiae
Ground truth minutiae

,

Specificity = 1 − Spurious minutiae
Ground truth minutiae

.

(15)

A number of 20 fingerprint images have been used in our ex-
periments. The “ground truth” consists of the fingerprint minu-
tiae manually detected in each fingerprint image, as exemplified in
Fig. 3. The results obtained for the four images shown in Fig. 3,
are presented in Table 1. Overall, for all images used in experi-
ment, a lower number of missing minutiae was achieved with this
enhancement algorithm than with the algorithm described in [8].
This is also reflected by the average sensitivity which was 87%
when this enhancement algorithm was used, and 70% when the
other enhancement method was used. On the other hand, method
[8] achieves a slightly higher average specificity (74%) than the
present enhancement algorithm (72%).

5. CONCLUSIONS

In this paper we introduced a method of fingerprint image enhance-
ment that relies on the sign of second directional derivative of the

Image Ground truth Enhancement Missing Spurious
minutiae method minutiae minutiae

1 45 a / b 0 / 4 5 / 3
2 46 a / b 12 / 15 7 / 5
3 14 a / b 0 / 3 1 / 2
4 23 a / b 3 / 5 18 / 20

Table 1. Performance of minutiae detection algorithm applied to
fingerprint images enhanced with different enhancement methods:
(a) is the proposed method; and (b) is the method in [8].

digital image. A polynomial facet model was employed to esti-
mate the derivatives of the discrete intensity surface of the image
in each image pixel. The approximation accuracy achieved by the
facet model determines the minimum size of those image details
that are preserved by the operation. The most important image
features that should be preserved are fingerprint minutiae and their
sizes are in the range of local ridge period. Thus, we proposed a
criterion for the selection of the approximation accuracy such that
to ensure the preservation of image details whose sizes are compa-
rable with the ridge period. The proposed algorithm was evaluated
on several fingerprint images, and compared against another fin-
gerprint enhancement algorithm proposed in the literature.
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