
FAST AND ACCURATE 3D SHAPE FROM FOCUS USING DYNAMIC PROGRAMMING 
OPTIMIZATION TECHNIQUE 

Muhammad Bilal Ahmad and Tae-Sun Choi, SeniorMember IEEE 

Gwangju Institute of Science and Technology, Gwangju, Korea. Email: bilal@gist.ac.kr

ABSTRACT 

The conventional Shape from Focus (SFF) method for 3D 
shape recovery from image focus is fast but inaccurate. 
The SFF method based on the Focused Image Surface 
(FIS) has shown better results by exhaustive search of the 
FIS shape using planar surface approximation at the cost 
of considerably higher computations. In this paper, we 
investigate fast and accurate SFF method. The 
conventional SFF method is used as the rough estimate at 
pixels at regular steps in the x and y directions, and this 
rough estimate is used to search the FIS shape for all 
pixels between the steps using the Dynamic Programming 
optimization technique. The proposed algorithm is very 
fast and shows comparable results with those of accurate 
SFF methods. 

1. INTRODUCTION 

Shape From Focus (SFF) [1-4] for 3D shape recovery 
is a search method which searches the camera parameters 
(lens position and/or focal length) that correspond to 
focusing the object. The basic idea of image focus is that 
the objects at different distances from a lens are focused at 
different distances. In SFF, an unknown object is moved 
with respect to the imaging system and a sequence of 
images that correspond to different levels of object focus 
is obtained. A focus measure is computed in the small 
image regions of each of the image frame in the image 
sequence. The value of the focus measure increases as the 
image sharpness or contrast increases and it attains the 
maximum for the sharpest focused image. Thus the 
sharpest focused image regions can be detected and 
extracted. Further, the distance or depth of object surface 
patches that correspond to the small image regions can be 
obtained from the knowledge of the lens position and the 
focal length that result in the sharpest focused images of 
the surface patches. 

The traditional SFF method (SFFTR) [2] maximizes 
the focus measure in planar images. SFFTR method is 
very fast but does not yield accurate shape or depth-map 
of objects because of piecewise constant approximation of 

the object shape in the window. The SFF method SFFFIS 
[3] based on the Focused Image Surface (FIS) yielded 
more accurate results than the SFFTR method. The FIS of 
an object is defined as the surface formed by the set of 
points at which the object points are focused by a camera 
lens. According to paraxial-geometric optics, there is one-
to-one correspondence between the shape of an object and 
the shape of its FIS. Therefore the problem of shape 
recovery can be posed as the problem of determining the 
shape of the FIS. The SFFFIS method has increased the 
accuracy of 3D shape recovery of object surfaces, but at 
the cost of much higher computations.  

The authors have already presented a new SFF 
technique SFFDP [4] to recover the 3D shape of objects 
using dynamic programming optimization technique. The 
search of FIS shape was presented as an optimization 
problem i.e. maximizes the focus measure in a 3D image 
volume. The SFFDP has low computational complexity 
and yields a better performance with respect to the 3D 
shape recovery. The SFFDP algorithm is significantly 
faster than the FIS algorithm, but a little slower than the 
SFFTR algorithm. In this paper, the SFFDP algorithm is 
modified to further reduce the number of computations 
and to keep the accuracy of 3D shape recovery.  

2. THE PROPOSED ALGORITHM 

In this paper and in [4], the search of the FIS shape is 
presented as an optimization problem i.e. maximizes the 
focus measure in the 3D image volume. The dynamic 
programming optimization technique is used to search the 
optimal shape of FIS, and hence, the recovery of the 3D 
shape. In SFFDP, the search of FIS was done in the whole 
image volume. To reduce the number of computations, 
here, we present the idea of searching the optimal surface 
in the small image volume around the first estimate by 
using the fast heuristic method based on DP. The optimal 
surfaces obtained from the small volumes are then 
combined together to get the final 3D shape. 

In SFFDP_1, an input image sequence is considered as 
an image volume yxiV ,, , where x, y represent the number of 

rows and columns of each image frame respectively and i 
represents the number of images in the sequence. A focus 

II - 9690-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



measure operator, the Modified Laplacian [2], is applied 
on each image frame in the input image sequence, and get 
the focus measure image volume yxiO ,, . In the first phase, 

the rough estimate using the traditional method SFFTR is 
obtained at pixels with small steps in x and y directions. In 
the second phase, the rough estimate is used to search the 
depth map for pixels between the steps by searching for an 
FIS shape. For every window in which the FIS was 
estimated in the first step, a small cubic volume of image 
space is considered in the focus measure image volume. 
The volume is centered at the initial estimate of FIS in that 
window, and the center of x and y steps. Now, in this 
volume, a search is made using the proposed heuristic 
model of dynamic programming optimization technique to 
search for the closest match of the shape of FIS by 
maximizing the focus measure in that small volume. The 
whole image volume is divided into small volumes, and 
the FIS shape is searched in each image volume.  

A small image volume nmpS ,,  centered with the image 

number from the rough estimate at (x,y) is taken from the 
focus measure image volume yxiO ,, . The size of nmpS ,,  is 

equal to the number of images chosen around the rough 
estimate and the size of steps in x and y directions during 
the first step for searching the rough estimate. Let P 
denotes the number of images in the small volume, and M 
and N denotes the step size in x (number of rows) and y 
(number of columns) directions. The values of P, M and N 
are arbitrary. Now the problem is reduced to search the 
optimal path in the small volume nmpS ,, that maximizes the 

focus measure. The small volume is shown in Fig. 1 (a). It 
should be noted that the small volume is centered with 
midpoint of x and y steps. Now, 2D general networks are 
constructed from the 3D image volume nmpS ,, . The 2D 

networks are constructed by slicing nmpS ,,  along x and y 

directions. First, m is kept constant, and y-slice 2D 
networks m

npA , are made. The y-slice 2D networks are made 

from one row of each image frame of nmpS ,, , where the row 

number is determined by the value of m. For example, 1
,npA

is made from the first row of each image frame of nmpS ,, .

Figure 1 (b) shows the y-slice 2D network for the first 
row. The number of y-slice networks is equal to the 
number of rows of image frame in nmpS ,, . Second, n is kept 

constant, and x-slice 2D networks n
mpB ,  are made. The x-

slice 2D networks n
mpB ,  are made from one column of each 

image frame of nmpS ,, , where the column number is 

determined by the value of n. Figure 1 (c) shows the x-
slice 2D network for the first column. The number of x-
slice networks is equal to the number of columns of image 

frame in nmpS ,, . The total 2D networks are, therefore, equal 

to the size of each image frame in nmpS ,, .

(a)   (b) 

  (c) 
Fig. 1. (a) 3D small image volume nmpS ,, around the rough 

estimate (b) 2D y-slice network for the first row (c) 2D x-
slice network for the first column. 

For small volume nmpS ,, , we have ‘M’ y-slice 2D 

networks of size P x N and ‘N’ x-slice 2D networks of size 
P x M. After slicing, “Right_Sum” and “Left_Sum” for 
each of the 2D networks are calculated using the 
recurrence formulation. The recurrence formulation for y-
slice 2D networks is explained as follows. The same 
formulation can be easily applied for x-slice 2D networks. 
Consider the y-slice 2D network as shown in Fig. 1 (b). 
For simplicity, the superscript ‘1’ is removed. So for 1st

row of the small volume nmpS ,, , the y-slice 2D network (see 

Fig. 1 (b)) can be expressed in matrix form as: 

][ ,
1

, npnp aAA == , where the size of matrix A is P x N . 

The Right_Sum SumR  for the matrix A is defined as: 

II - 970

➡ ➡



where the recursive formulae involved in the calculation of 
the Right_Sum (see the “structure of matrix” sumR ) are 
given as: 

1,1, pp ar =  for p = 1,2,…,P, 

}{ 1,21,1,1,1 ,max −−+= nnnn rrar ,

{ }1,11,1,1,, ,,max −+−−−+= npnpnpnpnp rrrar

for p = 2,3,…,P-1; n = 2,3,…,N, and 
{ }1,1,1,, ,max −−−+= nPnPnPnP rrar , for n = 2,3,…,N. 

In general, we can say that the Right_Sum at (p,n) is the 
sum of Laplacian value at (p,n) from the matrix A, and the 
maximum of the three previous Right_Sum values at the 
left column. 
Similarly the Left_Sum SumL  for the matrix A is defined. 
The recursive formulae involved in the calculation of 
Left_Sum is almost similar as for the Right_Sum SumR . It 
should be noted that the matrix Left_Sum SumL  is filled 
from the right side, i.e., the last column of SumL  is filled 
first and the first column is filled at the end. And, we can 
say that the Left_Sum at (p,n) is the sum of Laplacian 
value at (p,n) from the matrix A, and the maximum of the 
three previous Left_Sum values at the right column. 

After calculating the Right_Sum and the Left_Sum for 
the matrix A, we calculate the “Total_Sum” sumT  for the 
matrix A as: 

ALRT sumsumsum −+= ,      (1) 

where ][ ,np
sum tT = , for p = 1,2,…,P; n = 1,2,…, N.  

Similarly, the Total_Sum sumT  is calculated for all rows 
using (1). The superscript ‘1’ removed from 1

,npA  is 

introduced here as m, which represents the number of rows 
in nmpS ,, . So in general, the Total_Sum for y-slice networks 

can be rewritten as: 

[ ] [ ] MmforytYT m
np

msum ,...,2,1,, == ,

where sumsum TYT =][  from the previous discussion. 
Similarly, the Total_Sum for x-slice networks are 

calculated using the same procedure as done for y-slice 
networks. The Total_Sum for x-slice networks can be 
expressed as: 

[ ] [ ] NnforxtXT n
mp

nsum ,...,2,1,, ==

The Total_Sum for x-slice networks can be simply 
obtained by changing the matrix m

npA ,  with matrix n
mpB ,  and 

replace ‘n’ by ‘m’ in the above mentioned procedure for y-
slice networks. The only difference is that now ‘n’ is kept 
constant instead of ‘m’. 
The Total_Sum sumST for the small volume nmpS ,, is 

determined as: 

[ ] [ ] [ ] PpforXTYTST
nsummsumpsum ,...,2,1, =+= or 

[ ] [ ] [ ] [ ]n
mp

m
np

p
nm

psum xtytstST ,,, +== or  

nmpnmpnmp xtytst ,,,,,, += ,

where [ ]m
npnmp ytyt ,,, = and [ ]n

mpnmp xtxt ,,, =

The focus map SF of the small volume nmpS ,,  is the 

image frame among the image sequence that gives 
maximum value of Total_Sum sumST  along the p direction 
and is expressed as: 

],[ ,nmsfSF =

[ ] nmp
Pp

p
nm

Pp
nm ststsf ,,

,...,1
,

,...,1
, maxargmaxarg

==
==

The focus map SF contains the image number for the 
best focused points of the small volume around the rough 
estimate. For getting the absolute image number 
corresponding to the best focused points, the initial rough 
estimate image number at (x,y) is added to the focus map. 
Similarly, the focus maps are calculated for all small 
volumes created by the steps in x and y direction. 

3. SIMULATION RESULTS 

Experiments were conducted on a simulated cone, a real 
cone, and a microscopic object - Lincoln statue on one 
cent US coin. Figure 2 shows one image from each test 
sequence. We see in Fig. 2 that only one part of the 
image is focused, whereas the other parts are blurred to 
varying degrees.  

(a)   (b)        (c) 
Fig. 2. Images from the test sequences (a) Simulated cone 
(b) Real Cone (c) Microscopic object. 

The 3D shapes or depth maps recovered by SFF 
methods are shown in Fig. 3-5. The ideal depth map for 
the simulated cone should be very smooth and the tip 
should be very sharp. We can see that the depth maps 
obtained by SFFTR on the simulated and real cones are 
not smooth. The depth maps seem to change in large 
jumps instead of varying gradually, and the tips of the 
cones are not very sharp. The SFFFIS shows better depth 
maps. SFFDP shows very good results on the simulated 
cone. The depth map obtained from SFFDP on the 
simulated cone is very smooth and the tip is very sharp. 
The new proposed algorithm SFFDP_1 shows much 
better results as compared to SFFTR and comparable 
results with those of SFFFIS and SFFDP. The results on 
the Microscopic object also show that the three 
algorithms SFFFIS, SFFDP and SFFDP_1 outperform 
SFFTR. We can subjectively say that SFFDP_1 produces 

II - 971

➡ ➡



comparable results with those of SFFFIS and SFFDP and 
better results than that of SFFTR. 

     (a)    (b) 

     (c)    (d) 
Fig. 3. The reconstructed 3-D depth map for the 
Simulated Cone object by (a) SFFTR (b) SFFFIS (c) 
SFFDP and (d) SFFDP_1. 

     (a)    (b) 

     (c)    (d) 
Fig. 4. The reconstructed 3-D depth map for the Real 
cone object by (a) SFFTR (b) SFFFIS (c) SFFDP and (d) 
SFFDP_1. 

     (a)    (b) 

     (c)    (d) 
Fig. 5. The reconstructed 3-D depth map for the 
microscopic object by (a) SFFTR (b) SFFFIS (c) SFFDP 
and (d) SFFDP_1. 

The computer simulation of SFF methods was carried 
out on 2.8 GHz P-IV PC. The depth estimation time of 
different algorithms are shown in Table 1 for a sequence 
of 97 images, and the size of each image frame being 256 
x 256 pixels. In the proposed algorithm SFFDP_1, the 
different parameters selected are: the step size in x and y 
directions equal to 9, and the number of images around 
the rough estimate equals to 21. SFFDP used the full 
image volume for the search of the optimal FIS shape. 
However, the SFFDP_1 used a small cubic volume 
around the first estimate for the search of the optimal FIS 
shape. The number of arithmetic operations reduces 
considerably in SFFDP_1 as compared to SFFDP. The 
SFFDP algorithm is much faster than the SFFFIS, but 
slower than the SFFTR. However, the SFFDP_1, as seen 
from the Table 1, is so fast that it executes almost in the 
same time as SFFTR.  

4. CONCLUSION 

The Shape From Focus methods proposed in the 
literature are either inaccurate or slow. The previously 
proposed algorithm by authors for 3D shape recovery 
using Shape From Focus based on dynamic programming 
optimization technique was more accurate but slower than 
the traditional method. The new proposed algorithm has 
shown comparable accurate results with those of 
previously accurate methods in the literature, and ranks in 
the fastest algorithms.  

5. REFERENCES 

[1] E. Krotkov, “Focusing,” International Journal of Computer 
Vision, Vol. 1 pp. 223-237, 1987.  

[2] Shree K. Nayar and Yasuo Nakagawa, "Shape from focus,” 
IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Vol. 16, No. 8, August 1994.  

[3] Murali Subbarao, and Tae-Sun Choi, “Accurate recovery of 
three dimensional shape from image focus,” IEEE Transactions 
on Pattern Analysis and Machine Intelligence, Vol. 17, No. 3, 
March 1995.  

[4] Muhammad Bilal Ahmad and Tae-Sun Choi, “A heuristic 
approach for finding best focused shape,” IEEE Transactions on 
Circuit System for Video Technologies (to be published in April 
2005 issue). 

II - 972

➡ ➠


