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ABSTRACT 
It is popular to extract discriminant features using Fisher linear 
discriminant analysis (LDA) for general pattern recognition. LDA 
aims to find an optimal discriminant transformation matrix, which 
maximizes the ratio of between-class scatter to within-class 
scatter. However, in case of small sample size and high 
dimensional data, LDA is prone to be unrealizable due to the 
singularity of scatter matrices. In this paper, we present a 
nonsingular transformation prior to performing LDA. This 
method is to transform general features using all eigenvectors of 
scatter matrix with nonzero eigenvalues. As a result, the scatter 
matrix of transformed features is nonsingular. Subsequently, the 
discriminant transformation is applied according to LDA using 
the new scatter matrices. The superiority of nonsingular 
discriminant analysis of between-class matrix comes from the 
shrinkage of within-class scatters and accordingly the 
enhancement of Fisher class separability. From the experiments 
on facial databases, we find that the nonsingular discriminant 
feature extraction achieves significant face recognition 
performance compared to other LDA-related methods for a wide 
range of sample sizes and class numbers. 

1. INTRODUCTION 
There is no doubt that face recognition is an amicable approach 
for biometrics because the authentication can be completed in 
hands-free way with no touch and interruption of user activities. 
In general, face recognition system suffers from the problems of 
high-dimensional data and small sample size. Owing to high-
dimensional data, it is indispensable to reducing the feature 
dimension and alleviating the computational load. Also, the face 
recognition performance is degraded by the variations of 
viewpoint, pose, illumination and expression, which are unseen in 
small training data. Accordingly, how to develop a discriminant 
feature extractor using small training samples becomes very 
challenging for face and general pattern recognition. To reinforce 
the classification performance, the linear discriminant analysis 
(LDA) extracts the most discriminant features according to Fisher 
criterion [4] where the ratios of between-class to within-class 
scatter matrices are maximized [6]. However, in case of small 
sample size, the scatter matrix is singular and the LDA has no 
solution to the generalized eigen-equation. In this paper, we 
present a new nonsingular discriminant analysis for facial feature 
extraction. A nonsingular transformation of between-class scatter 
matrix is merged in LDA so as to improve the Fisher class 
separability in nonsingular subspace. 

LDA or PCA plus LDA algorithm has been attracting many 
researchers focusing on this topic. Fukunaga and Mantock [7] 
presented the nonparametric discriminant analysis where the 
nonparametric scatter matrix was determined using k nearest 
neighbor technique. The resulting matrix was of full rank. To 
prevent matrix singularity using high-dimensional data, the 

Fisherface features were extracted by sequentially performing 
PCA and LDA [1]. Similarly, LDA could be applied to low-
dimensional wavelet features for extraction of discriminant 
waveletface [2]. In [1], the Fisher class separability was measured 
to see the significance of visual information in wavelet domain. 
Also, the LDA was improved by introducing a weighted pairwise 
Fisher criterion for multiclass pattern classification [11]. To relax 
the assumption of equal sample covariance in LDA framework, 
the heteroscedastic discriminant analysis (HDA) was proposed 
through a maximum likelihood procedure of Gaussian model [8]. 
Similarly, the geometric LDA was presented by maximizing a 
geometric mapping function, which was correlated to the 
minimum classification error [13].  

This paper proposes the nonsingular discriminant feature 
extraction for face recognition under different sample sizes and 
class numbers. The general concept is motivated from solving the 
singular problem of scatter matrices for LDA procedure. We 
transform the face data using the eigenvectors of scatter matrix 
corresponding to all nonzero eigenvalues. This step assures that 
the scatter matrix of transformed data is nonsingular and positive 
definite. Even if the original scatter matrix is nonsingular, this 
transformation is able to optimize the between-class scatter, 
which is beneficial for pattern classification. At the second step, 
the Fisher criterion using the new nonsingular scatter matrices is 
maximized so as to improve the class discriminability. In this 
study, we systematically investigate different PCA plus LDA 
algorithms [10][14] by comparing their theoretical relations and 
experimental results. The experiments on face recognition show 
good performance of using proposed twofold linear 
transformation compared to other PCA plus LDA algorithms. 

2. LINEAR DISCRIMINANT ANALYSIS 
The purpose of LDA procedure is to calculate a transformation 

matrix A , which transforms the original feature vector nℜ∈x

into a reduced feature vector pℜ∈z , np < , as xz TA= . The 
optimal matrix is estimated by maximizing the Fisher’s class 
separability criterion ( )AF  defined by the ratio of the traces of 
between-class scatter matrix to within-class scatter matrix using 
the transformed features 

( )
)tr(

)tr(
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w
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b
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= ,                                (1) 

where bS  and wS are between-class and within-class scatter 

matrices, respectively [6]. The matrices bS  and wS  are positive 

semi-definite matrices. Then, the columns of optimal 
transformation matrix }{ iA a=  correspond to the generalized 

eigenvectors for p  leading eigenvalues in iwiib SS aa λ= . If wS

is nonsingular, this can be converted to a conventional eigenvalue 
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problem of b
1

w SS− . Foley and Sammon [5] maximized the Fisher 

ratio with the constraint for deriving the orthonormal discriminant 
vectors. Also, Fukunaga [6] presented several variants of Fisher’s 
criterion using scatter matrices bS , wS  and tS . In this paper, we 

concern the inverse criterion 
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With this variant, the discriminant vectors are derived via 

minimizing )(AF 1−  or correspondingly finding the eigenvectors 

of w
1

b SS − . But, in real world, the training face images of each 

person are usually insufficient. When the number of training 
samples is small or the feature dimension is high, LDA will 
become unrealizable because of the property 

))(,min()( 1MCnSrank w −×=  and ),min()( 1CnSrank b −=
[12] where C is class numbers and M represents the sample 
numbers of each class. We are unable to realize the calculation 

for the eigenvectors for b
1

w SS−  or w
1

b SS − . To avoid total sample 

size smaller than feature dimension, we can reduce the feature 
dimension prior to performing LDA. 

3. NONSINGULAR DISCRIMINANT ANALYSIS 
In this paper, a nonsingular transformation is applied to between-
class scatter matrix bS . We are minimizing the inverse Fisher 

criterion of (2). It is necessary to deal with the eigenvalues of 

w
1

b SS− or the singular problem of bS .

3.1 Nonsingular Transformation 
The nonsingular transformation of bS  aims to optimize the trace 

of between-class scatter matrix through 

)( trmaxarg ASAA b
T

A
b = .                        (3) 

The optimal solution bA  satisfies the diagonalization process 

bbb
T
b DASA =  with nn ×  diagonal matrix bD . In case of 

singular bS , there existing zero eigenvalues. We may construct a 

mn×  nonsingular transformation matrix bÂ  consisted of m

eigenvectors with nonzero eigenvalues of bS . Applying the 

nonsingular transformation mT
bb A ℜ∈= xy ˆ , we can maximize 

the distance between the class mean cy  and the total mean y .
This discriminant process is significantly beneficial for pattern 
classification. The resulting between-class scatter matrix 

bbb
T
bb DASAS ˆˆˆˆ ==  is a mm ×  diagonal and nonsingular matrix. 

The mm ×  diagonal matrix bD̂  is related to nn ×  diagonal 

matrix bD  by 
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Notably, the transformed bŜ  is positive definite, nonsingular

and invertible. At the same time, the new within-class scatter 

matrix due to xy T
bb Â=  is derived by bw

T
bw ASAS ˆˆˆ = , which is 

not diagonal. With the new wŜ  and nonsingular bŜ , we may 

fulfill LDA for the transformed features by . This resolves the 

small sample size problem of LDA. Besides, for the case of 
nonsingular bS , it is easy to find that the conditions nm = ,

bb AA =ˆ  and bbb SDD ˆˆ ==  hold. Here, we would like to 

highlight that the eigen-analysis of between-class scatter matrix  
is different from the eigenface method [1] applied for the total 
scatter matrix tS . In this study, we are interested in evaluating 

the properties of Fisher class separability )ˆ( bAF  when applying 

the nonsingular transformation matrix bÂ . The following two 

theorems are illustrated for the cases that the original between-
class scatter matrix bS  is nonsingular as well as singular. 

Theorem 1 Assuming that the original between-class scatter 
matrix bS  is nonsingular, we transform the original features x

using xy T
bb Â=  where bb AA =ˆ . The between-class and within-

class scatters of the transformed features by are the same as

those of original features x . Equivalently, the Fisher class 
separability is invariant under the transformation. 

Theorem 2 Assuming that the original between-class scatter 
matrix bS  is singular and has rank of m , we perform the 

transformation xy T
bb Â=  where mn×  matrix bÂ  is consisted of 

m  eigenvectors of bS  corresponding to nonzero eigenvalues. 

The new between-class scatter matrix bŜ  is nonsingular. After 

the transformation, the between-class scatter is unchanged and 
the within-class scatter is shrunk. Equivalently, the Fisher class 
separability is enlarged.

For the proof of Theorem 2, we explain the shrinkage of within-
class scatter matrix as follows 
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Then, the Fisher class separability is enlarged because 
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3.2 Discriminant Transformation
After the original features nℜ∈x  are transformed to mℜ∈y ,
the second step of proposed nonsingular discriminant 
transformation (NDT) is to fulfill the standard LDA and 

transform y  to pℜ∈z , nmp ≤≤  using the transformed within-
class scatter and between-class scatter matrices. Namely, we will 

estimate the transformation matrix dÂ  by minimizing the inverse 
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Fisher criterion where the new scatter matrices wŜ  and bŜ  are 

considered 

)ˆ(tr
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Similar to the general LDA procedure, the discriminant 

transformation matrix dÂ  is established using the eigenvectors of 

1
bwSS −ˆˆ . Because bŜ  is nonsingular after nonsingular 

transformation, dÂ  always exists. Overall, the dual 

transformation for NDT feature extraction is formed by 

xyz T
b

T
db

T
db AAA ˆˆˆ == .                       (8) 

4. EXPERIMENTS 
4.1 Experimental Setup 
The proposed NDT feature extraction was evaluated using two 
popular face databases: ORL (http://www.cam-
orl.co.uk/facedatabase.html) and FERET [14] provided by AT&T 
Lab Cambridge and NIST, respectively. Some examples of two 
persons selected from two databases are shown in Figure 1. ORL 
database contained ten different images of 92�112 pixels for each 
of 40 distinct persons ( 40C = ). These pictures were taken at 
different time, varying the lighting, facial expressions 
(open/closed eyes, smiling/not smiling) and facial details 
(glasses/no glasses). Also, we sampled ten different images of 256
�384 pixels for each of 150 persons ( 150C = ) from FERET 
database. These images were collected in similar illumination 
condition but varying expressions and pose angles. We rescaled 
the images to 92�104 pixels. As displayed in Figure 1, we applied 
three-level wavelet decomposition [2] and reduced the size of all 

images to 12�13, i.e. 156ℜ∈x , before executing different LDA 
related methods. For each subject of ORL and FERET, we 
randomly selected M  images as prototypes and the remaining 

M10 −  images as queries. All recognition rates were reported by 
employing 10-fold cross-validation. During recognition, the 
nearest feature line classifier [9] was applied. In this study, 
enhanced Fisher linear discriminant model (EFM) [10], direct 
LDA (D-LDA) 0 and proposed NDT were implemented. To 
investigate the cases of singular and nonsingular scatter matrices, 
we chose several class numbers C  and training sample numbers 
per class M  for face recognition. For objective comparison, we 

fixed the dimension of the extracted features pℜ∈z  to be 
1Cp −=  when using different methods. This dimension was 

considered because D-LDA and NDT dealt with eigen-analysis of 

bS  having the property ),min()( 1CnSrank b −= .

4.2 Evaluation of Different Methods on ORL Database 
We compare the face recognition rates of D-LDA, EFM and 
proposed NDT methods for different class numbers C  and 
training sample numbers M  using ORL database. The baseline 
LDA achieves the recognition rate of 86% for the case of 40C =
and 5M = . The other cases of C  and M  are unrealizable 
because of singular wS . Basically, the feature extraction using 

EFM is fulfilled via performing whitening transformation of wS

prior to LDA procedure. Similarly, D-LDA extracts facial features 

by performing whitening transformation of bS  and then 

diagonalization of the transformed within-class scatter matrix wS
~

.

In Figure 2, we evaluate the recognition rates of D-LDA, EFM 
and NDT for different C  and M . We can see that the 
recognition rates are decreased for smaller M  and larger C . For 
different C  and M , NDT achieves higher recognition rates than 
EFM and D-LDA. EFM is better than D-LDA for 2M =  but 
worse than D-LDA for 3M = . For example, NDT obtains the 
recognition rate of 92%, which is higher than 83.8% of EFM and 
89.9% of D-LDA in the case of 30C = , 3M = . LDA is 
unrealizable for this case. Also, Figure 3 shows the recognition 
results with standard deviation bars for D-LDA and NDT for the 
case of 3M = . We find that the recognition rates of NDT are 
more stable than those of D-LDA. 

ORL face images (92�112) 

Three-level waveletfaces (12�13) 

FERET face images (92�104) 

Three-level waveletfaces (12�13) 
Figure 1: Some samples of two persons selected from ORL and 

FERET databases. Three-level waveletfaces are shown. 
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Figure 2: Comparison of recognition rates of D-LDA, EFM 
and NDT under different class numbers and training sample 

numbers. ORL database is used. 

4.3 Evaluation of Baseline LDA and NDT on FERET 
Database 
In the subsequent experiments, the conventional LDA is referred 
as the baseline for evaluation. Without any modification, LDA 
encounters small sample size problem for many cases of class 
number C  and training sample number per class M . However, 
the proposed NDT performs a nonsingular transformation bS

prior to LDA procedure and try to maximize the between-class 
scatter, which is beneficial for discriminant pattern recognition. 
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Figure 4 displays the recognition rates of LDA and NDT when 
evaluating them using FERET face database. Herein, LDA is 
realizable for 80C ≥  when 3M =  and 40C ≥  when 5M = .
We can see that NDT is better than LDA for different C  and M .
The recognition rates of NDT taper off to those of LDA as C
increases. For this case, the Fisher class separabilities using LDA 
and NDT become unchanged. 

Figure 3: Recognition rates with standard deviation bars for D-
LDA and NDT for 3M =  and different class numbers. 
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Figure 4: Comparison of recognition rates of baseline LDA 
and NDT under different class numbers and training sample 

numbers. FERET database is used. 

5. CONCLUSION 
We have presented a new NDT facial feature extraction for 

face recognition under different categories and training data 
numbers. NDT aimed to transform the original features into the 
nonsingular or principal space of between-class scatter matrix. 
The singularity problem of scatter matrices is resolved so as to 
fulfill the optimization of Fisher criterion. Our algorithm was 
developed and carried out by two transformations: nonsingular 
transformation and discriminant transformation. This scheme was 
applicable for LDA procedures in cases of singular as well as 
nonsingular scatter matrices. Using NDT, the transformed within-
class and between-class scatters were unchanged when bS  was 

nonsingular. The Fisher class separability was unchanged as well. 
However, when bS  was singular, the transformed between-class 

scatter was unchanged and simultaneously the transformed 
within-class scatter was shrunk. The resulting Fisher class 
separability was increased. This method was different from 
principal component analysis (PCA) plus LDA, which 

transformed the features using the eigenvectors of total scatter 
matrix. In the experiments, we evaluated the feature extraction 
algorithms on ORL and FERET face databases. It is found that 
NDT solves the small sample size problem. NDT is superior to 
LDA. Recognition performance of NDT is substantially higher 
than that of EFM and D-LDA for various conditions. 
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