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ABSTRACT

The present paper introduces a novel set of facial biometrics

based on quantified facial asymmetry measures in the fre-

quency domain. In particular, we show that these biomet-

rics work well for images showing expression variations.

A comparison of the recognition rates with those obtained

from spatial domain asymmetry measures based on raw in-

tensity values suggests that the frequency domain represen-

tation is more robust to intra-personal distortions and indeed

provides an efficient approach for performing classification

or recognition. The role of asymmetry of the different re-

gions (e.g., eyes, mouth, nose) of the face is investigated to

determine which regions provide the maximum discrimina-

tion among individuals in the presence of different expres-

sions for better classification results in such a scenario.

1. INTRODUCTION

Human faces have two kinds of asymmetry - intrinsic and

extrinsic. The former is caused by growth, injury and age-

related changes, while the latter is affected by viewing ori-

entation and lighting direction. We are however interested

in intrinsic asymmetry which is directly related to the indi-

vidual face structure while extrinsic asymmetry can be con-

trolled to a large extent. Psychologists have long been in-

terested in the relationship between facial asymmetry and

attractiveness and its role in identification. [1] observed that

the more asymmetric a face, the less attractive it is. Further-

more, the less attractive a face is, the more recognizable it

is ([2]). All these studies indicate the potential significance

of asymmetry in human face-identification problems.

A commonly accepted notion in computer vision is that

human faces are bilaterally symmetric ([3]) and [4] reported

no differences whatsoever in recognition rates while using

only the right and left halves of the face. However, a well-

known fact is that manifesting expressions cause a consid-

erable amount of facial asymmetry, they being more intense
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on the left side of the face ([5]). Indeed [6] found differ-

ences in recognition rates for the two halves of the face un-

der a given facial expression. Craniofacial research gener-

ally describes that asymmetries exist mostly in the middle

and lower third of the face ([7]).

Despite extensive studies on facial asymmetry, its use in

human identification started in the computer vision commu-

nity only in 2001 with the seminal work by Liu ([8]), who
for the first time showed that certain facial asymmetry mea-

sures are efficient human identification tools under expres-

sion variations. This was followed by more in-depth studies

([9], [10]) which further investigated the role and locations

of different types of asymmetry measures both for human

as well as expression classifications. But no work has been

done on developing asymmetry measures in the frequency

domain as per our knowledge, and their use as a biometric

for face identification.

The paper is organized as follows. Section 2 describes
the dataset used. Section 3 introduces the new asymmetry
measures in the frequency domain and Section 4 contains
the classification results and a feature set analysis. Finally,

a discussion appears in Section 5.

2. DATA

The dataset used is a part of the “Cohn-Kanade AU-coded

Facial Expression Database” ([11]), consisting of images of

55 individuals expressing three different kinds of emotions
- joy, anger and disgust. Each person was asked to express

one emotion at a time by starting with a neutral expression

and gradually evolving into its peak form. The data consists

of video clips of people showing an emotion, each clip be-

ing broken down into several frames. The raw images are

normalized using an affine transformation, the details are in-

cluded in [9]. Some normalized images from our database

are shown in Figure 1. This database is the only known

one for studying facial asymmetry in the presence of severe

expression variations. We chose this subset as our initial

test-bed but hope to extend to larger databases in future.
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Fig. 1. Sample images from our database. Courtesy [9]

We use a total of 495 frames, which include 3 frames
from each emotion for each subject (55 × 3 × 3). These
are chosen from the most neutral (the beginning frame), the

most peak (the final frame) and a middle frame in the entire

expression sequence.

3. THE FREQUENCY DOMAIN

Many signal processing applications in computer engineer-

ing involve the frequency-domain representation of signals.

The frequency spectrum consists of two components, the

magnitude and phase. In 2D images particularly, the phase
component captures more of the image intelligibility than

magnitude and hence is very significant for performing im-

age reconstruction ([12]). [13] showed that correlation fil-

ters built in the frequency domain can be used for efficient

face-based recognition. Recently, the significance of phase

has also been used in biometric authentication. [14] pro-

posed correlation filters based only on the phase component

of an image, which performed as well as the original fil-

ters. Later [15] demonstrated that performing PCA in the

frequency domain by eliminating the magnitude spectrum

and retaining only the phase not only outperformed spatial

domain PCA, but also have attractive features such as illu-

mination tolerance, can handle partial occlusions. All these

point out the benefits of considering classification features

in the frequency domain for potentially improved results.

Symmetry properties of the Fourier transform are often

very useful ([16]). Any sequence x(n) can be expressed as
a sum of a symmetric part xe(n) and an asymmetric part
xo(n). Specifically,

x(n) = xe(n) + xo(n),

where xe(n) = 1
2 (x(n) + x(−n)) and xo(n) = 1

2 (x(n) −
x(−n)). When a Fourier transform is performed on a real
sequence x(n), the even part (xe(n)) transforms to the real
part of the Fourier transform and the odd part (xo(n)) trans-
forms to its imaginary part (Fourier transform of any se-

quence is generally complex-valued). The Fourier trans-

form of a real and even sequence is thus real; that of a real

and odd sequence is purely imaginary. Now, since phase is

defined as θ = tan−1
(

I
R

)
, it will be zero in case the imag-

inary component is zero. In other words, a symmetric se-

quence gives rise to zero-phase frequency spectrum. These

observations therefore imply that the imaginary component

of the Fourier transform (1D Fourier transform slices of the

face) can be considered as a measure of facial asymmetry

in the frequency domain, and also establish a nice relation-

ship between facial asymmetry and the phase component of

the frequency domain. Given the role played by both phase

and asymmetry in face-based recognition, this presents an

opportunity to exploit this correspondence for the develop-

ment of more refined classification tools.

3.1. The Asymmetry Biometric

Following the notion presented in the earlier section, an ob-

vious choice for the asymmetry measures in the frequency

domain seems to be some function of the imaginary part of

the Fourier transform. One such metric can be defined as

the energy of these imaginary components. For a sequence
ak + ibk, k = 1, . . . , N , the energy of the imaginary part
of the entire sequence is given by

eN =
N∑

k=1

b2
k.

The lower the value of eN , the less the amount of asymme-

try (and hence more symmetry) and vice versa.

We considered each row of an image as a sequence and

computed the energy of the imaginary components of each

row as its measure of asymmetry. Figure 2 shows how this

measure of asymmetry varies among the different expres-

sions of the different people. For instance, for person 1, joy
produces the greatest degree of asymmetry, and neutral ex-

pression the lowest, whereas, for person 2, joy and neutral
expressions show maximum asymmetry followed by anger

and disgust. On comparing the two people, we observe that

overall, person 1 has more facial asymmetry than person 2
for the three emotions, but less asymmetry for the neutral

expression. These are only exploratory analysis but they

give a preliminary idea that these measures may be helpful

in recognizing people in the presence of expression varia-

tions. This hence constitutes a work parallel to that of [9],

using a frequency domain representation instead.

4. RESULTS

For the images in our database, the identification features

are computed as follows. A Fourier transform is performed

on each row of a face image, and the energy of the imag-

inary components for each row computed. The entire face

image is then divided into blocks of two rows and the ener-

gies over each block of two rows averaged. Thus, the total
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(a) Person 1 (b) Person 2

Fig. 2. Asymmetry of the different facial features for the
four expressions of two persons. The horizontal axis shows

different frequencies at which the features are computed.

number of features we have for each image is half of that of

the total number of rows in that image. Since our images are

of dimension 128× 128, this means that our feature vectors
are each of length 64. The averaging over rows is done in
order to smooth out noise in the image which can possibly

create artificial asymmetry artifacts and give misleading re-

sults. Averaging overmore rows, on the other hand, can lead

to over-smoothing and a loss of relevant asymmetry infor-

mation. So, we selected blocks of two rows as the optimal

after some experimentation.

We tried a few different classification methods, and the

best results were obtainedwith the individual PCA approach

(or, IPCA for short) [14]. For each person p, subspacesWp

are computed and each test image is projected onto each in-

dividual subspace using yp = WT
p (x − mp). The image

is then reconstructed as xp = Wpyp + mp and the recon-

struction error computed ||ep||2 = ||x − xp||2. The final
classification chooses the subspace with the smallest ||ep||2.
The training was done on the neutral frames of the 3

emotions of joy, anger and disgust from all the 55 individ-
uals in the dataset and testing on the peak frame of the 3
emotions from all the people. We compare the results with

those reported in [9], which uses a simplistic measure of

facial asymmetry in the spatial domain called D-face. The
results show that our proposed frequency domain measures

are more effective for expression-invariant human identifi-

cation, resulting in a 11.22% absolute improvement and a
63.8% relative improvement over D-face.
We also studied the discriminative power of these asym-

metry measures to determine which parts of the face actu-

Asymmetry features Misclassification rates

Spatial D-face 17.58%

Frequency-based 6.36%

Table 1. Misclassification rates using asymmetry measures.

ally contributes to the identification process. Ideally, those

features which contribute to inter-class differences should

have large variation between subjects and small variation

within the same subject. Hence, a measure of discrimina-

tion can be provided by a variance ratio type quantity, in

particular, we use what is known as an Augmented Variance
Ratio or AVR, which was also used by ([9]). AVR compares
within class and between class variances and at the same

time penalizes features whose class means are too close to

one another. For a feature F with values SF in a data set

with C total classes, AVR is calculated as

AV R(SF ) =
V ar(SF )

1
C

∑C
k=1

V ark(SF )
minj �=k(|meank(SF )−meanj(SF )|)

,

wheremeani(SF ) is the mean of the subset of values from
feature F belonging to class i. AVR thus imposes a penalty
on features which may have small intra-class variance but

close inter-class mean values. The higher the AVR value

of a feature, the more discriminative it is for classification.

For our problem, the individual subjects form the classes

(C = 55).
Figure 4(a) shows the AVR values for all the features,

from which it an be observed that the forehead region has

much higher values than the rest of the face. Looking at this

more carefully, we find that a very few of the subjects in the

the database have some artificial asymmetry in that region

arising from either falling hair or edge artifacts introduced

in the normalization procedure. Two such images are shown

in Figure 3. This is highly undesirable and causes spurious

results by masking the actual asymmetry of that facial re-

gion. We thus removed the top 3 features and the new AVR
plot appears in Figure 4(b). It is clearly evident from this

(a) Hair (b) Edge artifacts

Fig. 3. Images with artificial asymmetry in the forehead.

that the features around the nose bridge contain the most

discriminative information pertaining to recognition of in-

dividuals based on facial asymmetry under different expres-

sions, followed by those around the chin. Moreover, this is

consistent with results in [9], which noted that nose bridge

is the most discriminating facial region for similar recog-
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nition tasks based on D-face. This establishes a firm basis

for the confidence that these features are the most relevant

and useful, and may yield fewer misclassifications that any

other features.
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Fig. 4. AVR values for our frequency-based asymmetry
measures for (a) all features, (b) all features except the top

three. (c) The white strip on the image denotes the regions

corresponding to the two peaks in (b). The features 0 − 64
represent the regions from the forehead to the chin of a face.

5. DISCUSSION

We have thus shown in this paper that facial asymmetry

measures in the frequency domain offer a promising po-

tential as an useful biometric in practice, especially, in the

presence of expression variations in face images. An error

rate as low as 6.36% is very impressive and desirable in-
deed given that the test images are very different from the

training ones. This in turn is very important for recognition

routines in practice, for example, in biometric identification

applications since surveillance photos captured at airports

and other public places is expected to be quite diverse with

respect to the expressions of an individual’s face. Hence any

algorithm that can deal with such variations is supposed to

be attractive to users. Thus far, we have only used very

simple classification methods and despite this, we have ob-

tained impressive results over previous assymetry measures.

Moreover, the fact that these measures vary considerably

with the different expressions can be exploited to perform

expression classifications as well, and a comparison of the

features for these apparently conflicting classification goals

(expression-invariant human identification and expression

classification) may be interesting, as done in [10]. The next

direction of research will consist of evaluating the frequency

domainmeasures for identification in the presence of illumi-

nation variations in face images. The advantage of working

in the frequency domain as opposed to that in the spatial or

the image domain is that it is much easier to adjust for these

common distortions that occur frequently in images.
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