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ABSTRACT

Based on a non-linear image representation, we propose a novel 

robust approach for registration of images under spatial 

brightness changes. The image registration is formulated as a 

two-stage hybrid framework combining both a new point-based 

algorithm and a robust estimation with M-estimators in a coarse-

to-fine manner. With the point-based algorithm applied at the 

highest level of decomposition, the initial affine parametric 

model can be first estimated. Subsequently, the robust estimation 

using M-estimators is incorporated into the hierarchical 

framework for completeness. Experimental results demonstrate 

that our proposed algorithm achieves higher accuracy and 

efficiency than the approach by brightness variation modeling 

with low-order polynomial functions (BVM).  

1. INTRODUCTION 

Image registration is to find the transformation which brings 

partially overlapped images into geometric alignment so that the 

points in one image can be related to their corresponding points 

in the other [1]. There are generally two types of distortions 

between the images to be registered. The first type is called a 

spatial distortion, where the images are spatially misaligned in 

relation to each other. The second type of distortions can be 

attributed to lighting conditions, weather, seasonal variations, 

etc., which is called a non-spatial distortion. The non-spatial 

distortions actually make the registration more difficult. Image 

registration techniques can be broadly classified into two 

categories: the intensity-based and feature-based methods. 

Intensity-based methods generally use the correlation function as 

a similarity metric, but correlation has less robustness for non-

spatial distortions. In contrast, the features represent information 

on a higher level, which makes feature-based methods suitable 

for situations under non-spatial distortions. However, obtaining 

correct matches of features is sometimes a hard problem.  

In this paper, we are concerned with the problem of 

registering the sensed image from the video camera attached to 

an aircraft with the reference imagery. We assume the distance 

between the camera and the target object on the ground is very 

far. For the domain of images under consideration, the variations 

of the intensity characteristics between the reference and sensed 

images may be large and non-uniform under non-spatial 

distortions. Motion estimation based on the optical flow equation 

(OFE) assumes brightness constancy [2][3]. If brightness is not 

conserved, the optical flow field can be severely biased 

approximation to the underlying 2D motion field of interest [4]. 

Researchers tried to relax this brightness constancy assumption 

and developed algorithms to estimate the motion parameters by 

the BVM-based method in an energy mini-mization framework 

[5][6]. It basically accounts for spatially varying smooth 

illumination variations. However, the situations resulting in the 

brightness changes between the reference and sensed images are 

very complex, and the effectiveness of BVM-based approach for 

image registration is sometimes limited. This prompts the 

necessity to identify an appropriate image representation, on 

which the OFE-based robust estimation using M-estimator in a 

coarse-to-fine manner can be incorporated. Our approach 

consists of two stages that address the difficulties caused by both 

spatial and non-spatial distortions. With a novel point-based 

algorithm applied at the coarsest scale of images, the initial 

affine model parameters can be estimated in the first stage. 

Subsequently, the robust estimation using M-estimator with a 

hierarchical iterative processing is used to refine the registration 

accuracy.  

This paper is organized as follows. Section 2 describes the 

chosen image representation for extending OFE-based tech-

niques. Section 3 describes a new point-based algorithm for 

initial matching. Section 4 describes the robust estimation using 

M-estimator. Section 5 describes the hierarchical algorithm and 

a selective data sampling strategy. Section 6 presents experi-

mental results using real image pairs. Finally, we give our con-

clusions in Section 7.

2. THE IMAGE REPRESENTATION 

OFE-based formulations assume brightness constancy, i.e., they 

estimate the 2D velocity of points of constant image brightness. 

However, the variations of the intensity characteristics between 

the reference and sensed images may be large and non-uniform 

because of non-spatial distortions. Therefore, in order to 

effectively incorporate the OFE-based parametric motion 

estimation into the proposed framework, two fundamental 

questions should be addressed: (1) what is a good image 

representation to work with using the OFE-based framework 

under non-spatial distortions; (2) the spatial distortions, i.e., the 

misalignment between images, may exceed certain large values, 

above which OFE-based methods can’t converge to the correct 

result.

To capture the common intensity information while 

suppressing the non-common brightness changes, the trans-

formation we have chosen is the absolute value of pixels in a 
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Laplacian pyramid, a non-linear image representation. The 

advantage of using the Laplacian pyramid is that its successive

levels are band-passed versions of the original signal, which 

ensures that the low spatial frequencies containing the 

information about brightness changes are substantially removed. 

Non-linear band-pass representations are useful to image

registration with both spatial and non-spatial distortions, because: 

(1) the creation of such representation images doesn’t involve

any thresholding, and therefore preserves all image details; (2) 

the image information removed in the creation of the non-linear

representations is largely that which is not common to the two 

images due to brightness changes. This facilitates a coarse-to-

fine search based on the non-linear image representation, where 

the method of modeling spatial brightness changes with low-

order polynomial functions can’t be directly applied.

3. A POINT-BASED ALGORITHM FOR 

INITIALIZATION

To avoid the problem of large spatial distortions, we propose a 

new point-based matching algorithm applied to the coarsest

scale of both images for initial matching. With two point 

patterns extracted from the reference image, and

the sensed image, respectively, the goal is to find 

the matching pairs between these two point sets. Only two

matching pairs are required to determine the initial parameters.

,,...,1 maaA

,,...,1 nbbB

For efficient matching, two relative invariant properties of 

similarity transform, the area and perimeter ratios, are used to

characterize the mapping between the two point sets. Let  be 

the area ratio, and the perimeter ratio, of a triangle pair from

the reference and sensed images respectively.

jkR

jkP

nm
kjjk CkCjSSR 3321 ,...,1,,...,1,/log           (1) 

nm
kjjk CkCjLLP 3321 ,...,1,,...,1,/log           (2) 

where  and denote the area, and perimeter of a 

triangle respectively and 

S L

 and are given constants. The 

proposed point-based matching algorithm consists of three steps: 

(i) geometric invariance properties between randomly selected

triangles in the two images are evaluated; (ii) an accumulator is

formed where votes on a particular match are tallied; (iii)

corresponding point pairs are identified by a procedure of

scanning the accumulator. In step (i), we create a 2D Area-

Perimeter (AP) histogram based on the area and perimeter-length 

ratios. Based on the 2D histogram, all possible matching pairs of 

triangles can be identified. In step (ii), we form a matching

Table ncmrcrTm ,...,1;,...,1, of control points. Any

triangle pair kj 21 , from the reference and sensed images

respectively, corresponding to the maximum value of the AP

histogram is selected as a candidate of a possible correct pair,

where
321 1111 ,, jjjj aaa  and .,,

321 1112 jjjk bbb  Let 

,/
2121 11111 kkjj bbaav ,/

3232 11112 kkjj bbaav
3131 11113 / kkjj bbaav . If 

all the following conditions are satisfied:

313332321 ,, vvvvvv               (3) 

where 3 is a small threshold, the three cells of  accumulate

one vote, i.e., , ,

mT

1,, crTcrT mm 321 ,, jjjr 321 ,, kkkc ,

respectively. After Table is formed, a “scanning algorithm” 

can determine the matching pairs. For the pairing procedure,

first find the maximum value in each row. If that value is also

the maximum in the corresponding column then we keep it and

set all other values in the same row and column to zero. If not, 

then we set the entire row and column to zero. After this 

scanning, non-zero remaining values exceeding another

threshold are used to determine the matching pairs. Finally,

similarity transformation parameters estimated by the matching

pairs can be used as the initial affine parameters in the second 

stage.

mT

4. ROBUST ESTIMATION USING A DIRECT METHOD 

In the proposed framework, the OFE is written as follows:

0,,,,,,,,,, tyxtyxvtyxtyxutyx tyx  (4) 

where vu, is the motion vector and  is the image

function after non-linear transformation. The motion field can be 

described using a parametric model of a few parameters. The 

classical approach to motion estimation using OFE incorporates

the motion model into OFE and establishes the objective 

function as: 

tyx ;,

2

, t

T

D vuE u                            (5) 

where I denotes the local brightness gradient vector, and u

=
T

vu, denotes the flow vector. In this paper, we focus on the 

estimation of an affine model for image registration. However, 

the proposed framework can be easily extended to other global

models. Our robust formulation follows on the lines of standard

M-estimation techniques [7][8], where the unknown parameters 

are estimated by minimizing an objective function of the

residual error. In particular, the following minimization problem 

is solved:

;min rED
a

; ;; t

T

D rE au           (6) 

where ;r is the robust -function defined over the 

residuals, r ; with a given scale factor, . In this work, we used 

the Lorentzian function, which is given as follows:

2

2

2
1log; rr                                (7) 

For the M-estimation for the parameters a in Eq. (6), we 

apply the Gauss-Newton (GN) method by Sawhney et al. [8].

Given a solution, ma  at the m-th step, the descent direction,
ma , is given by

mmm gHa aa
1                         (8) 

mmm
aaa

1                                (9) 

for some positive . mH a is the approximation to the 

Hessian of the objective function in Eq. (6), involving only the

first derivatives of the residuals, and is its gradient, both 

defined at the current 

mg a

m
a . We can write:
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as the k-th and kl-th elements of g  and H , respectively. Thus,

the GN equations become,

k
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where It is noticed that the corresponding 

equations for the robust estimators are simply weighted normal

equations with the weight of each measurement i  being 

,...1, Klk ....1 Ni

i

i

r

r
.

The minimization of the objective function assumes that the 

scale parameter is constant for each iteration. In this setting,

the most commonly used scale estimator is the median absolute

deviation (MAD) [9] estimate given by

j
j

i
i

rmedianrmedian4825.1ˆ                 (12) 

5. THE HIERARCHICAL ALGORITHM AND 

SELECTIVE DATA SAMPLING 

Given the GN formulation and the step for  estimation, we

embed these in a hierarchical coarse-to-fine direct method. 

Starting at the coarse level, given an initial estimate of the 

parameters from the initial matching, the iterations are 

repeated until the change in parameters is below a threshold or a 

specified number of iterations are reached. The estimated

parameters are projected to the next finer level and used as

initial estimates to warp the corresponding image, and the 

process repeated until convergence at the finest level.

0
a

In order to reduce the computational cost, a new selective

data-sampling scheme is proposed, where only a sparse set of the 

pixels within the region of interest is used to form the objective 

function. In our selection scheme, we first partition the image

into uniform blocks. Then, we select a location in each

block to form the objective function. For each pixel 

nm

yx,  in the

block, we compute a local normalized-correlation surface

around the displacement  at the previous

iteration. In our current implementation, the correlation surface

is estimated only within a radius  around . We

define a reliability measure

yxNC , au ;, yx

1d au ;, yx

yx,  at pixel  as the inverse

of the sum of minimum distance errors in a quadratic model 

fitting to the local normalized-correlation surface

yx,

yxNC , , i.e.,

2

22

,

,,
,

yxe

yxNCyxNC
yx

yx
                     (13) 

where is the sum of squared errors from the quadratic

fitting in the local neighborhood of pixel

yxe ,

yx, , yxNCx ,  and 

the partial derivatives, and yxNCy , 2 a small positive 

number to prevent instabilities when is very small. Thus, 

our selection of a reliable data constraint in each block is simply

to find pixel with the maximum reliability measure

yxe ,

yx, max .

From our experiment, we found 400 constraints are quite

sufficient for accurate affine parameter estimation.

6. EXPERIMENTAL RESULTS 

We have designed four sets of experiments: the first uses a pair 

of aerial images under irregular brightness changes, the second 

set of 4 image pairs (Test A-D) were captured with non-spatial 

distortions, the third set of 4 frame pairs (Test E-H) uses an

aerial video sequence with small illumination changes, and the 

fourth consists of two pairs of Landsat TM images (Test I-J)

with salient brightness changes. The size of the test image pairs

is 512 512.

In the experiment, we limit our decomposition level to be 4,

so that the coarsest image level uses 64 64, which still retains 

adequate information for feature extraction. The point-based

matching algorithm can always identify enough matching pairs,

and provide a good estimate, where the translation errors are 

within 10 pixels in both horizontal and vertical directions and

5 degrees for rotation errors. We first compare the registration

accuracy between the proposed algorithm and the BVM-based

method using an image pair of Fig. 1(a)-(b), and extracted points

marked by black “+” in Fig. 1(c)-(d). A close examination of

Fig. 2 indicates that the proposed algorithm greatly reduces the 

registration errors from the initial matching, whereas the motion

estimate of the BVM-based is erroneous. For evaluation, we 

consider using the normalized cross correlation (NCC) between

the overlapping areas of the images because the true motion is

not known. From Table 1, it is noticed that the final accuracy of

our algorithm is much better than that of the BVM-based

approach for the second set of image pairs (Test A-D). For the 

third set of video frame pairs (Test E-F), the performances of 

both algorithms are nearly the same with only slight differences. 

For the fourth set of image pairs (Test I-J), the results are shown 

in Table 2, whereas the BVM-based method doesn’t converge to 

the correct results in both pairs. For visual comparison, we

selected two image pairs of Test A and I depicted in Fig. 3 and 4.

It is observed the BVM-based method is not very robust when

brightness variations between the reference and sensed images

can’t be modeled with low-order polynomial functions.

Table 1. NCC comparison. 

BVM Our Approach

Test A 0.7803 0.9664

Test B 0.8308 0.9553

Test C 0.7643 0.9556

Test D 0.8575 0.9229

Test E 0.9722 0.9818

Test F 0.9745 0.9794

Test G 0.9783 0.9782

Test H 0.9717 0.9745

Table 2. NCC comparison using Landsat image pairs. 

Initial Matching Our Approach 

Test I 0.6280 0.9133

Test J 0.4871 0.8742

7. CONCLUSIONS

In this paper, we have proposed a robust hybrid hierarchical

approach to the registration problem under spatially non-uniform

brightness variations. Based on a non-linear band-pass image 

representation, the image registration is formulated as a two-

stage procedure combining both the point-based algorithm and 

the robust estimation framework in a coarse-to-fine manner. As 

it is experimentally demonstrated, our proposed framework can 

achieve higher accuracy than the BVM-based approach. 
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Fig. 1. Image registration example I: (a)-(b) two source images;

(c)-(d) extracted points marked by black “+” at the coarsest scale. 

Fig. 2. Image difference: (a) after initial matching; (b) BVM-

based method; (c) proposed approach.

Fig. 3. Image registration example II: (a)-(b) two source images

(Test A); (c)-(d) image differences using the BVM-based 

method, and the proposed approach, respectively.
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