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ABSTRACT
This paper presents two evolutionary agent-based approaches to 

fundamental matrix estimation. In order to improve the search 

ability and computational efficiency of the simple evolutionary 

agent, new methods, Competitive Evolutionary Agent (CEA) and 

Finite Multiple Evolutionary Agent (FMEA), are proposed by 

applying better evolutionary strategies and decision rules. CEA 

mainly focuses on the reproduction behavior and FMEA 

concentrates on the diffusion process.  Experiments show that the 

improved approaches perform better than the original one in terms 

of accuracy and speed, and are more robust to noise and outliers. 

1. INTRODUCTION 
Estimation of the fundamental matrix that describes a 

relationship, across uncalibrated perspective cameras, is a 

fundamental problem in computer vision. It encapsulates the 

epipolar geometry, and can be used for motion segmentation, 3D 

reconstruction, camera calibration and view synthesis, etc. 

Due to the great importance of fundamental matrix, its accurate 

and robust estimation has become an important and very 

productive research area [1-6]. Recently, with the development of 

evolutionary computation in the field of computer vision, some 

evolutionary algorithms have been implemented to provide the 

estimation, and have demonstrated excellent performance. Firstly, 

Chai addressed a simple genetic algorithm (sGA) for parameter 

estimation [4]. In sGA, each gene stands for a pair of 

correspondences and a chromosome with eight genes is 

considered as a sufficient subset to estimate the fundamental 

matrix. The authors also proposed a variable genetic algorithm 

(vGA), which employs different strategies for computing 

according to the length of chromosome, and the minimal subset 

for estimation consists of only seven genes [5]. GAs-based 

approaches can effectively explore a vast solution space by using 

properly defined genetic operators, and efficiently detect the 

outliers that are in gross disagreement with a specific postulated 

model. However, without exploiting the intrinsic parallelism, the 

calculation time for GAs is too long for many applications. This is 

a deficiency of nearly all GA-based applications. 

The author also proposed an evolutionary agent-based 

approach, which improves the robustness of geometry estimation 

and reduces the computational expense as well [6]. The 

correspondences are viewed as a one-dimensional cellular-

environment in which the agents inhabit, evolve and execute some 

evolutionary behaviors, such as reproduction and diffusion, to find 

the optimal result. Our approach is different from some other 

agent-based techniques, which mainly search in 2D digital images 

and use agents only to label feature pixels in the neighborhood [7-

8]. But through the experiments it is found that because of the 

simplicity of evolutionary operators, when the parent agents breed 

more than one offspring, the agents of next generation will 

increase almost exponentially at early stages. Moreover, if there is 

no rule about termination, it will take a long time for convergence 

to occur.  

In this paper, we present two improved approaches based on 

evolutionary agents for parameter estimation: (1) Competitive 

Evolutionary Agent (CEA). The differences between CEA and 

Simple Evolutionary Agent (SEA) are mainly in reproduction 

behavior. When a parent agent breeds a finite number of offspring 

agents, the offspring will compete with each other, and only the 

one with minimum cost will survive and proceed with diffusion 

operator. (2) Finite Multiple Evolutionary Agent (FMEA). The 

differences between FMEA and SEA lie in diffusion behavior. 

The offspring first compare their cost with their parents’ to 

determine which of these will be kept in the environment. Then 

the successful agents are sorted by their cost, and the lowest cost 

best
n  agents are kept active for further evolutionary processing. 

Experiments with both synthetic data and real images show that 

the improved methods work better than the original SEA and are 

appropriate for different situations. CEA produces results 

commensurate with, or superior to, SEA in accuracy, but the 

computation time decreases greatly (almost thirty percent). With 

higher computation efficiency, FMEA can obtain much better 

results than SEA in terms of accuracy and robustness. 

The organization of the paper is as follows. In section 2, we 

give a brief introduction to epipolar geometry and agents. Then 

two improved approaches based on evolutionary agents are 

presented in detail. Section 4 deals with the experimental results 

obtained from synthetic data and real images. Finally, the 

conclusions are drawn in section 5. 

2. BACKGROUND 
   Consider the case of two images acquired from a 3D scene. An 

image point im in the left view corresponds to an image point im

in the right. According to the well-known epipolar constraint, we 

have [1] 
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where F  is a 33 matrix called the fundamental matrix, 
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for the corresponding points. F  can be obtained by using only 

seven correspondences, which form the data matrix 
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which has 1 or 3 real solutions for . Ideally, every possible 

subsample (seven correspondences) of all the correspondences n
should be considered to get the optimal result, but this is usually 

computationally infeasible. 

3. IMPROVED APPROACHES BASED ON 

EVOLUTIONARY AGENTS 
In this section, we first give a common definition of 

evolutionary agents, then focus on the evolutionary behaviors of 

the improved approaches. 

3.1 Common definition of evolutionary agent 

    Suppose that S  is the dataset of all the correspondences 

niii ,,1|, mm  and may be viewed as a one-

dimensional grid lattice for agents to inhabit and evolve. The 

evolutionary agent is defined as follows 

,,Rep,,,, cos DieDifffmlDaAgent tp

which includes seven parameters to denote its structure and 

evolutionary behaviors. p  stands for  the positions of an agent in 

S , which is a seven-dimensional vector, and the 

entry niip
k

,,1| , 7,,1k , is the index number of 

correspondence lattice S , as shown in Figure 1. a  denotes the 

age of an agent; fml  represents the family index, which indicates 

where an agent comes from. Rep denotes the reproduction 

behavior; Diff represents the diffusion behavior; while Die

indicates that an agent has a life span, and it may die like a living 

thing.
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Figure 1. Agent representation for the 7 correspondences 
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 symbolizes the agent’s cost, which indicates the 

adoptability of an agent, and can be computed by using the F

matrix obtained from the correspondences of p

n
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where
i
 satisfies the following equation 

)(0

)(1

outlierotherwise

inlierdif i

i

id  is the Sampson distance of correspondences i  [9]. Sampson 

distance gives a first-order approximation to geometric error, the 

orthogonal distance of a point to the quadric variety determined 

by fundamental matrix.    
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 is the threshold 

for inliers and outliers, obtained from a maximum likelihood 

estimation. Readers are referred to the work [3] for more details. 

In general, we mainly consider the Sampson distances of inliers 

and the outliers make a little contribution to the cost function. 

3.2 Evolutionary behaviors of competitive evolutionary 

agent 
Evolutionary agents adapt to their environment mainly by way 

of two behavioral responses, namely, reproduction and diffusion. 

We employ )( gA  to stand for the set of all active agents in 

generation g .
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Figure 2. Evolutionary behaviors of CEA 

(1) Reproduction: In the reproduction process, each active 

agent )( g  ( g denotes the generation of the evolutionary process) 

will breed a finite number, m , of offspring agents, 1g . The 

differences between )( g  and )1( g  are mainly in the position 

vectors, that is, two elements of )( gp  are selected and changed 

into the index numbers of S  by a random number generator. 

Computation time will increase dramatically for a large m  if no 

parallel algorithm is applied. So in CEA  the cost of the new 

generated agents are first computed by using equation (1), then the 

siblings of the same family, )1(

)(

g

l  ( l  denotes the family number), 

compete with each other. Only the agent with minimum cost will 

survive and move on to diffusion process. That is to say, there will 

be only one agent, the best one, kept by each family. Thus the 

total active agents of each generation will not increase, but better 

offspring have been created and selected by breeding. Thus this 

method of optimization, using two steps, reduces the complexity 

of the calculations. 

(2) Diffusion: The diffusion behavior is important for an agent 

to search for new positions in correspondence lattice. After the 

reproduction process, the successful agents )1( g will further 

compare their cost with that of their parent )( g . If the offspring 

have the less cost, they will be appended to the agent set )1( gA ,
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and their parents will become inactive and be removed from the 

evolutionary environment. If not, the offspring will be deleted and 

the age of their parent will be increased by one. 

3.3 Evolutionary behaviors of Finite multiple 

evolutionary agent 
(1) Reproduction: The reproduction process of FMEA is 

simpler than that of CEA. Each active agent 
)( g

 breeds m

offspring )1( g , and two entries of )( gp are changed into 

randomly generated index numbers, just as SEA does. 
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Figure 3. Evolutionary behaviors of FMEA 

 (2) Diffusion: First of all, the cost of the offspring is computed 

according to equation (1). Then the offspring agents of family l ,
)1(

)(

g

l , compare their cost with their parent’s respectively. If the 

offspring wins, they will be added to the agent set, and their 

parents are removed. If none of the offspring of family l  is better 

than their parent, they will be deleted and the age of their parents 
)(

)(

g

l
 will increase. That is to say, in FMEA, the offspring of 

family l maybe all survive from the comparison if with less cost. 

But here in contrast to CEA, after each generation there won’t be 

more than one active agent of each family. Finally, the successful 

agents )1( g  are sorted ascendingly according to their cost, and 

the first bestn  are kept for evolutionary process of next generation. 

Thus, we avoid the dramatic increase of active agents in the 

environment, especially at early stages. Each evolutionary setup 

will begin with the same number of active agents, and ends with 

the same number of offspring of better quality. 

We would also emphasize that after each generation we will 

check the ages of active agents. If the age of an agent exceeds its 

life span, it will be removed from the environment, which avoids 

endless trial-and-error and thus reduces useless computation. If 

there is no active agent in the evolutionary environment, the whole 

process halts. 

4. EXPERIMENTAL RESULTS 
In this part, our improved approaches are compared with 

several typical methods, including LMedS [2], MAPSAC [3], and 

sGA [4]. In the comparison, part of the source code that is 

provided by X. Armangue [10] is used. 

4.1 Experiments with synthetic data 
    In the experiments with synthetic data, the correspondences are 

randomly generated by space points in the region of 3  visible to 

two different positions of a synthetic camera: ]RC[IP1

( C stands for camera intrinsic matrix) and tRCP2 , where 

the camera makes a rotation R  and a translation t . Here the total 

number of correspondences is 100, and there are only 10 agents in 
)0( . The number of agents for initialization may be larger than 

10, but it will take more time for computation and ten agents has 

been found in practice to be good enough for real applications. 

The experiments are divided into two groups: 

     (G1): Six different ranges of Gaussian noise are added to the 

projective correspondences, whose means are 0 and variances vary 

from 0.5 to 3.0 (in steps of 0.5), as shown in Table 1. 

(G2): The means and variances of Gaussian noise are fixed to 0, 

1, respectively; the percentage of outliers disturbed by the noise 

and false matches are varied from 10% to 50% (in steps of 10%), 

as shown in Table 2. 

Table 1  Sampson distance under variable variance of noise 

 LMedS MAPSAC sGA SEA CEA FMEA 

0.5 2.4893 0.3322 0.2825 0.2748 0.2689 0.2421

1.0 3.1307 0.8971 0.5532 0.5271 0.5139 0.4671

1.5 3.4586 1.5853 0.9426 0.9096 0.8821 0.8248

2.0 3.3881 1.9167 1.4093 1.3556 1.3179 1.2641

2.5 4.3218 2.3176 1.6802 1.6459 1.6196 1.5517

3.0 4.4311 2.7388 1.9850 1.9357 1.9033 1.8181

Table 2  Sampson distance under different percentage of outliers 

 LMedS MAPSAC sGA SEA CEA FMEA 

10% 3.1401 1.2186 0.7225 0.6136 0.5642 0.5245

20% 3.7694 1.4756 0.9875 0.7855 0.7503 0.6969

30% 3.9844 1.9037 1.2141 1.0508 1.0146 0.9402

40% 4.0806 2.3307 1.3916 1.1879 1.1340 1.0507

50% 4.7508 2.7166 1.9770 1.7179 1.7020 1.5730

Table 3  Average computing times for two groups (Sec.) 

Group LMedS MAPSAC sGA SEA CEA FMEA 

G1 0.2748 0.4619 0.5594 0.3675 0.2433 0.3237

G2 0.2772 0.4766 0.5696 0.3209 0.2293 0.3118
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    Table 1 and 2 show the experimental results of (G1) and (G2), 

respectively. And Table 3 shows the average computation time 

spent by the methods in (G1) and (G2). From these tables, we can 

notice that EA-based approaches perform better than other typical 

methods, better even the simple genetic algorithm. And in the 

three EA-based methods, CEA turns out to be the quickest one, 

the results of which are slightly better than those of SEA, but the 

computation time is decreased by 33.8% in the noise-perturbation 

test, and 28.5% in the outlier-perturbation test, as shown in Table 

1 and 2, respectively. Also it can be seen that, FMEA works as 

fast as SEA, but obtains the most accurate results. For instance, 

compared with SEA, the Sampson distance of FMEA decreases 

11.4% and 6.08% when the variance of noise is 1.0 and 3.0 

respectively, and 11.4% and 8.43% when there are 10% and 50% 

outliers involved respectively. 

                    

4.2 Experiments with medical images 
Three different pairs of medical images are taken from a 

laparoscopic operation. Figure 4 illustrates the first pair of images 

we use and the white circles denote the feature points obtained by 

corner detection and matching.  

Figure 4  The medical images from two viewpoints 

Table 4  Sampson distance of different pairs of medical images 

Group LMedS MAPSAC sGA SEA CEA FMEA

MG1 3.5031 2.3201 1.6677 1.5240 1.4952 1.4546

MG2 3.7667 2.7987 1.8458 1.7727 1.7268 1.7003

MG3 3.0981 2.5948 1.6841 1.6773 1.6206 1.5749

Table 5 Average computation time for medical image testing (Sec.) 

LMedS MAPSAC sGA SEA CEA FMEA 

Time 0.6639 0.8487 1.0374 0.7755 0.6723 0.7905

Table 4 and 5 show the Sampson distances and computation 

time of the medical image testing, respectively. We can see that 

EA-based methods also perform best in the real image 

experiments. The mean Sampson distances of LMedS, MAPSAC, 

sGA, SEA and CEA are 2.192, 1.631, 1.099, 1.052, 1.024 times as 

much as that of FMEA. As to the computational efficiency, CEA 

works so fast that the computation time for CEA is 0.866, 0.851 as 

much as those of SEA and FMEA, respectively.  

From the experiments above, we can conclude that:  

(1) The competition between siblings in CEA effectively 

keeps the dramatic increase of new agents within limits, 

without decreasing the searching ability of evolutionary 

agent in the environment. 

(2) The survival-of-finite-fittest in FMEA provides a richer 

population and more exploration to avoid unfavorable 

local minima than SEA and CEA, but with the same 

computation expense as SEA. 

In other words, the evolutionary strategies of the improved 

methods help agents search for a fit parameter set in the uncertain 

solution space, and move more efficiently toward the global 

optimum by gradually reducing the chance of reproducing an unfit 

dataset.  

                         

5. CONCLUSION 
In this paper, we describe two evolutionary agent-based 

approaches to fundamental matrix estimation, which employ new 

evolutionary strategies and decision rules. CEA mainly focuses on 

the reproduction behaviors to reduce the computing time, which 

produces results commensurate with, or superior to, SEA. FMEA 

focuses on the diffusion behaviors to obtain more accurate results, 

which is also appropriate in the various noise or outlier situations. 

The results of experiments in fundamental matrix estimation 

indicate that the improved methods attain high level of 

performance in terms of accuracy and computational efficiency. It 

can obtain an optimal (or near optimal) result in the solution space 

and is robust to the outliers disturbed by position noise and false 

matches. 
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