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ABSTRACT

In this paper, a novel content adaptive rate-distortion 

optimization scheme has been proposed. The scheme could 

effectively distinguish texture region, edge region and flat region 

using directional field technique. Since the Human Vision 

System (HVS) perceives distortions more easily near edges and 

in flat regions, distortion reduction is more important in those 

regions than the bits it consumes to code the motion information. 

The adaptive rate-distortion optimization is carried out by 

adjusting the Lagrangian multiplier so that small values are 

assigned to edge and flat regions and large values to the random 

texture region. The proposed scheme has been tested in the 

scalable video coding (SVC) reference codec by Microsoft 

Research Asia (MSRA) [1]. Experimental results have shown 

that the accuracy of motion alignment in the visually important 

region is greatly improved in the temporal transform step of 3D 

wavelet coding and the scheme effectively preserves details in 

the most perceptually prominent regions for all bitstream layers 

with no loss in PSNR. 

1. INTRODUCTION 

The Human Vision System (HVS) is not able to acquire all the 

information that is presented to them with equal attention. It is 

assumed in vision research that human attention will always be 

drawn to certain pre-attentive visual features like orientation, 

curvature and motion [2]. Therefore, in regions containing these 

features, it would be easier to spot distortions. On the other hand, 

in the texture regions, distortions are less noticeable, and it is 

reasonable to emphasize on rate reduction and tolerate more 

distortions.

 In most of the traditional video coders, temporal correlation 

is exploited by carrying out motion estimation based on minimal 

mean absolute error (MAE), which is generally not a good 

indication of the distortion as perceived by HVS. There have 

been several efforts in the past trying to include perceptual 

measures into video encoding. In [3], the focus was mainly on 

determination of proper quantization steps with sub-band Just 

Noticeable Distortion (JND). In recent H.264/MPEG-4 advanced 

video coding standard, highest coding efficiency is achieved by 

introducing the rate – distortion optimization (RDO) technique to 

give the best coding result by maximizing image quality and 

minimizing data rate at the same time. In [4], a new adaptive 

RDO scheme has been proposed which exploits motion and 

texture masking property to adjust the Lagrangian multiplier and 

achieves an overall bitrate reduction by allowing more distortion 

in the less noticeable background random texture region. The 

success of perceptual RDO scheme of this kind depends largely 

on the good estimation of visual features and thus a more 

accurate visual importance map is needed to be established. 

 The RDO technique is also an important component in 

wavelet-based scalable video coding (SVC) scheme that is 

currently under investigation by MPEG-21, Part 13 [5]. The 

SVC scheme requires an embedded bitstream to be formed from 

which bitstreams with different bitrate, resolution and frame rate 

could be extracted with reasonably good quality. In this paper, 

we propose an effective directional field based visual importance 

map which could successfully capture the features related to pre-

attentive processing such as edges and curves. Based on the 

visual importance map, the regions with more pre-attentive 

features will get more distortion-reduction by assigning a smaller 

Lagrangian multiplier. Rate balance is achieved by assigning a 

relatively larger Lagrangian multiplier to the random texture 

region so that more distortion is allowed without noticeable 

visual degradation to the image. Since HVS is also sensitive to 

distortions in flat regions, we also assign a small Lagrangian 

multiplier to flat regions. Experimental results have shown that 

the new scheme could preserve most pre-attentive features and 

gives distortion reduction in the flat regions. There is virtually no 

loss in PSNR compared to the original MSRA codec. 

 The rest of the paper is organized as follows. Section 2 

gives an overview of the motion alignment techniques under 

investigation in SVC. Section 3 discusses the techniques of 

getting visual importance map based on directional field 

estimations. Section 4 presents the content-based perceptually 

adaptive RDO scheme. Experimental results are summarized in 

Section 5, and conclusion is presented in Section 6. 

2. LAYERED MOTION ALIGNMENT IN SVC 

In SVC, scalable motion representation is necessary to achieve 

arbitrary rate-distortion optimized motion and texture at any 

bitrate range. Several ways of scalable motion coding have been 

proposed. In [6], motion information is represented in layers 

from coarse to fine resolution and accuracy. It consists of a base 
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layer and several enhancement layers. The base layer is 

generated using a relatively large Lagrangian multiplier , and 

the enhancement layers are generated by successively smaller .

In the layered framework, the value of  is fixed for the 

generation of one particular layer and thus the tradeoff between 

rate and distortion is fixed everywhere in that frame. Variable 

size block matching and selective motion vector coding is used 

within each layer of motion estimation [6]. The best matching 

result is selected from one of the seven block partition modes 

from which greater accuracy is obtained by a finer partition. 

With this scheme, it might be possible to have sub-optimal 

block-partition decisions. Coarser partitions might be selected 

for a detail region and an unnecessary fine partition might be 

selected for a random texture region because that  is the same 

throughout the entire frame. If, for every macroblock (MB),

can be made adaptive to importance of the local contents based 

on HVS, this kind of sub-optimal decisions could be avoided by 

assigning a small  to detail regions to achieve a finer partition 

and assigning a large  to texture regions and to stop the 

partition early. We have designed a mechanism to incorporate 

visual importance map in the motion coding process and the 

results are presented in subsequent sections. 

3. DIRECTIONAL FIELD BASED VISUAL 

IMPORTANCE MAP ESTIMATION 

There are many segmentation techniques, such as Edgeflow [7], 

Meanshift [8], and Bayesian estimations [9], which are capable 

of providing good segmentation results but are computational 

complexity intensive. In this paper, we propose an effective 

visual importance map based on directional field technique 

which is simple yet effective. Directional fields can be estimated 

by gradient-based methods [10]. In the gradient-based approach, 

the pixel gradient vectors in an image are described by the 

gradient vector [Gx(x,y), Gy(x,y)]T, which can be simplified by 

the use of Sobel operators. 
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where I(x,y) represents the pixel intensity at location (x,y) in an 

image. The complex number representation of the gradient 

vectors is squared before averaging. After averaging, the 

gradient vectors have to be converted back to their single-angle 

representation. The squared vectors are found as, 
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and the average squared gradient can be calculated by averaging 

in local neighborhood with a window size of W,
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With the use of above notations, the coherence (Coh) of the 

squared gradients can be expressed as below: 
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Fig. 1. 58th Frame of bus (top) and its importance map (bottom). 

A coherence value of 1 refers to the extreme case where all 

squared gradient vectors are in the same direction. On the other 

hand, a coherence value of 0 indicates that the squared gradient 

vectors are equally distributed in all directions. The coherence 

value may vary between these two extremes. Therefore the 

coherence value of the directional field provides important 

information in classifying image into texture, edge and flat 

regions. A coherence of 1 implies that the neighborhood edges 

are consistently pointing in the same direction and this 

corresponds to regions with strong edges. A coherence of 0 

implies that the neighborhood edges are scattered in all 

directions and there are no edges i.e., corresponding to a flat 

region. A coherence value near 0.5 implies that the 

neighborhoods are texture regions. An example is shown in 

Figure 1 where the white area denotes the edge region where the 

coherence value in the 4×4 neighborhood is greater than 0.9, and 

the gray area denotes random texture where the local coherence 

score is in between 0.6 and 0.9. It can be seen from the example 

that most of the important edges and textures are captured in this 

importance map.

4. ADAPTIVE RDO SCHEME 

Since the motion estimation is performed on an MB by MB basis, 

the Lagrangian multiplier can also be adjusted at the MB level. 

Based on equations (1) to (4), we can compute the average 

coherence for an MB. A non-linear mapping is used to decide 

how much  is to be adjusted based on the MB’s average 

coherence.
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Fig. 2. An MB of size 16×16 is divided into 4×4 windows. 

The current frame is divided into MBs of size 16×16 for 

motion estimation. To compute the coherence score of an MB, it 

is not suitable to directly set the window size to be the size of an 

MB as in Equation (3). The MB is too big to capture the local 

image characteristics accurately. To better estimate the image 

features, we divide the MB into small windows of size 4×4 and 

compute the coherence score for every 4×4 window in the MB

using equations (1) to (4). A sample MB is shown in Figure 2. 

Every MB is divided into 16 4×4 windows. If the coherence of 

the i-th window in the MB is denoted as Coh(i), the average 

coherence of the MB is obtained as in (5), 

16

1

)(
16

1

i
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For the edges and flat regions with coherence 0 and 1, we would 

like to use a small  in the RDO process, indicating that 

distortion reduction is more important than rate reduction. So we 

assign it to be 0.5 , which is the lower bound of MB. For other 

average coherence scores, MB will be adjusted linearly. From 

CohMB = 0 to CohMB = 0.5, it represents a gradual change of 

image characteristics from a flat region to a random texture 

region and increasingly more distortion could be tolerated. At 

CohMB = 0.5, we select the maximum value for MB to be 1.2 .

Our mapping function gives a linearly increasing MB in that 

interval to give increasingly more rate reduction. From CohMB = 

0.5 to CohMB = 1, the image characteristics changes from random 

texture to edges and less distortion could be tolerated. Our 

mapping function gives a linearly decreasing MB to give 

increasingly more distortion reduction. The resultant mapping 

function is nonlinear and symmetrical in the line CohMB = 0.5 

and is formulated in (6). 
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where  is predefined in the codec, 4.11
, 5.01

 and 
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.

5. EXPERIMENTAL RESULTS 

The algorithm has been implemented into the MSRA reference 

software [11]. In our experiments, four levels of temporal 

decomposition have been performed during compression and 

several bitstreams are generated for a number of rate points as

described in Table 1. The motion estimation used in this 

experiment is single layer for each of the temporal 

decomposition to better examine the effect of the proposed 

algorithm. Adaptation of the algorithm to the multiple layer 

frameworks for each level of temporal decomposition is 

straightforward. Coherence maps are generated using a 4×4 

window for every target frame during motion search in the 

temporal decomposition. Since the resolution of the bitstream 

specified at high bitrate is CIF and at low bitrate is QCIF, the 

generation of motion information for the first two levels of the 

temporal decomposition is CIF and for the next two levels it is 

QCIF.  is initialized with empirically determined value of 16 

for the first two temporal levels and 32 for the next two levels. 

Five bitstream layers are generated for all the test sequences. The 

bitstream test points are listed in Table 1. 

It has been observed that significant visual improvements 

were achieved in the reconstructed frames especially in the 

regions containing substantial amount of details. This is because 

all the important image features have been captured by the 

directional field based coherence map, and the value of  has 

been adjusted accordingly in different image regions resulting in 

a better distortion reduction in the detailed region. As an 

example, in the frame number 12 of the foreman sequence shown 

in Figure 4, many details near the corner of the eye are preserved 

and less distortion is observed at the mouth. Similar effects can 

be seen in Figure 5 as well, the window of the bus is blurred in 

the reconstructed frame from the reference software, but it is 

well preserved in the new scheme. 

Fig. 3. Relationship of MB against CohMB

The PSNR results are summarized in Table 1 for different 

sequences using the proposed algorithm. Figure 6 shows the 

PSNR comparison of the results from the reference software and 

the proposed algorithm. It has been observed that the 

performance of the proposed algorithm is comparable to the 

reference software in terms of PSNR. For all the sequences 

tested, the average PSNRs are almost the same. At some rate 

points, the proposed algorithm even outperforms the reference 

method. This is because the proposed scheme allows more local 

PSNR loss in random texture regions to same bit budget. The 

local loss is compensated by the gain in PSNR in the detail and 

flat regions. The suppression of distortion in the detail and flat 

regions lead to gain in perceptual quality. On the other hand, the 

increase in distortion in the random texture region is much less 

noticeable. This results in overall improvement of the visual 

quality. 

6. CONCLUSION 

A directional field based content adaptive rate-distortion 

optimization algorithm for scalable 3D wavelet video coding has 

been proposed in this paper. The algorithm is capable of 

distinguishing local characteristics of images in terms of edge, 

texture and flat region and it adaptively optimizes the R-D 

tradeoff at a MB level. The algorithm has a low complexity and 

could be easily implemented. Preliminary experiments have 

shown that the algorithm could increase the subjective quality of 
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the reconstructed frames in terms of detail preservation with no 

loss of PSNR at a wide range of rate points.

Fig. 4. Frame 12 of Foreman sequence at bitrate 256kbps, 

30frame/s. Left: anchor image of the reference software; Right: 

proposed method. 

Fig. 5. Frame 58 of bus sequence at bitrate 192kbps, 15 frame/s. 

Left: anchor image of the reference software; Right: proposed. 

Table 1. PSNR results for different sequences 

Sequence Bitrates 

(kbit/s)

Spatial

format

Frame 

Rate

PSNR
(MSRA)

PSNR
(proposed) 

32 QCIF 7.5 29.248 29.218 

48 QCIF 15.0 29.704 29.576 

96 CIF 15.0 30.886 30.877 

192 CIF 15.0 33.579 33.603 

Foreman 

256 CIF 30.0 34.329 34.333 

48 QCIF 7.5 22.791 22.791 

64 QCIF 15.0 23.267 23.234 

128 CIF 15.0 23.749 23.747 

256 CIF 15.0 26.908 26.912 

Mobile

384 CIF 30.0 28.645 28.650 

64 QCIF 7.5 26.002 25.986 

96 QCIF 15.0 26.295 26.289 

192 CIF 15.0 27.485 27.495 

384 CIF 15.0 30.466 30.478 

Bus

512 CIF 30.0 30.998 30.972 

128 QCIF 7.5 30.273 30.258 

192 QCIF 15.0 29.481 29.408 

384 CIF 15.0 31.074 31.116 

512 CIF 15.0 32.478 32.489 

Football

1024 CIF 30.0 34.162 34.194 

  Fig. 6. RD-plot of different sequences. 

7. REFERENCES 

[1] J. Xu, et. al, “3D Sub-band Video Coding using Barbell 

lifting,” ISO/IEC JTC/WG11 M10569, S05, March 2004. 

[2] O. Le Meur, P. Le Callet, D. Barba, D. Thoreau, E. Francois, 

“From low level perception to high level perception, a 

coherent approach for visual attention modeling.” Proc. of 

SPIE-IS&T Electronic Imaging 2004, SPIE Vol. 5292. 

[3] C.-H. Chou and C.-W. Chen, “A perceptually optimized 3-d 

subband image codec for video communication over wireless 

channels,” IEEE Trans. Circuits Syst. Video Technol. 6(2), 

pp. 143-156, 1996. 

[4] Chun-Jen Tsai, Chih-Wei Tang, Ching-Ho Chen, and Ya-Hui 

Yu, “Adaptive Rate-distortion Optimization using perceptual 

Hints”, 2004 IEEE International Conference on Multimedia 

and Expo (ICME’2004), Taipei, Taiwan, June 27th – 30th, 

2004.

[5] ISO/IEC JTC 1/SC 29/WG 11N6520, Scalable Video Model 

2.0, July 2004, Redmond, WA, USA 

[6] Ruiqin Xiong, Jizheng Xu, Feng Wu, Responses of CE1a in 

SVC: Scalable Motion. ISO/IEC JTC1/SC29/WG11 

MPEG2004/M11128, Redmond, July 2004. 

[7] Wei-Ying Ma and B. S. Manjunath, “EdgeFlow: A Techique 

for Boundary Detection and Image Segmentation”, IEEE

Transactions on Image Processing, vol. 9, No. 8 August 

2000.

[8] Dorin Comaniciu and Peter Meer, “Mean Shift: A Robust 

Approach Toward Feature Space Analysis”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 

vol. 24, No. 5, May 2002. 

[9] Charles A Bouman and Michael Shapiro, “A Multi-scale 

Random Field Model for Bayesian Image Segmentation”, 

IEEE Transactions on Image Processing, vol. 3, No.2, March 

1994.

[10] A. M. Bazen and S. H. Gerez, “Systematic Methods for the 

Computation of the Directional Fields and Singular Points of 

Fingerprints,” IEEE Transactions on Pattern Analysis and 

Machine Intelligence, vol. 24, pp. 905-919. 2002. 

[11] MSRA software, ftp://ftp.tnt.uni-hannover.de

II - 932

➡ ➠


