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ABSTRACT
In this paper, we investigate the rank constraint of the dis-
crete phase difference, and derive its exact parametric model.
We show that the discrete phase difference of two shifted
images, or their subregions, is a 2-dimensional sawtooth
signal. This allows us to determine the motion parameters to
subpixel accuracy by simply counting the number of cycles
of the phase difference along each frequency axis. The sub-
pixel portion is given by the non-integer fraction of the last
cycle along each axis. The problem is formulated as a ho-
mogeneous cost function under rank constraint for the phase
matrix, and the shape constraint for the filter that computes
the group delay, and is solved using a robust technique.

1. RELATION BETWEEN DISCRETE AND
CONTINUOUS PHASE DIFFERENCES

Let f1(x, y) and f2(x, y) = f1(x − xo, y − yo) be two
square-integrable functions with their relative shifts given
by (xo, yo). Their cross power spectrum is then given by

ĉ(u, v) =
f̂1f̂

∗
2

|f̂1f̂∗
2 |

(1)

where the hat sign as usual indicates the Fourier transform,
and the asterisk stands for the complex conjugate. As is well
known, due to the Fourier shift property the spatial transla-
tions lead to linear phase differences between the two func-
tions along each frequency axis, i.e.

∠ĉ(u, v) = xou + yov (2)

which is a planar surface through the origin.
Eq. (1) is shown to be equally applicable in the discrete

case, and yield remarkably good results for image regis-
tration. The motion parameters are determined by inverse
transforming the discrete ĉ(u, v), which yields a discrete
Dirichlet function [1]. The solution can then be found by
a least-squares fitting. However, if we apply this approach
locally, the estimation of local motion parameters becomes
inaccurate and dominated by errors. The main cause for this
is the noise process and the aliasing errors, which often are
localized at the high frequency components of the Fourier
spectrum, but become dispersed in the spatial domain upon
inversion of ĉ(u, v). To overcome this problem, we can es-
timate the displacements directly in the Fourier domain.
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A practical solution for this problem was first proposed by
Hoge [2], who suggested that the two frequency axes can be
decoupled by a subspace approximation of the phase corre-
lation matrix exp(iP(m, n)). The advantage is that the un-
wrapping step can then be performed on the 1-dimensional
dominant left and right eigenvectors of the phase correla-
tion matrix, rather than directly on the phase matrix itself
i.e. P - recall that 2D phase unwrapping is known to be no-
toriously ill-posed. We will show below that due to the rank
constraint of the unwrapped phase matrix, the unwrapping
process becomes separable along the two frequency axes.
In other words, it reduces to two 1-dimensional unwrapping
steps. As a result very good results can also be found with-
out subspace approximation. Furthermore, We will show
that even phase unwrapping is an unnecessary step, since
we will determine the exact parametric shape of the phase
difference matrix.
Proposition Let P = [pmn] be the discrete phase differ-
ence matrix of two images shifted by (xo, yo), where m =
0, ..., M − 1, and n = 0, ..., N − 1. We maintain that P is
a 2D sawtooth signal, with periods 2π

xo
and 2π

yo
.

Proof: The phase difference of the underlying continuous
signals is given in the spatial domain by

ϕ(x, y) =
∫ ∞

∞

∫ ∞

∞
(x0u + yov)exp(iux + ivy)dudv (3)

= −ixo
dδ(x)

dx
− iyo

dδ(y)

dy
(4)

where the derivatives are in distributional sense [3]. From
bandlimited sampling theory and (4), the spatial domain
representation of the discrete phase difference is given by

ϕkl=−i
xo

πk

(
2sincπk

xo
−2 cos πk

xo

)
−i

yo

πl

(
2sinc πl

yo
−2 cos πl

yo

)
(5)

Therefore

Re{ϕkl}
= x2

o

πk2

(
2πk

xo
cos πk

xo
− 2 sin πk

xo

)
+π

y2
o

πl2

(
2 cos πl

yo
− 2 sin πl

yo

)

= xo
2

2π/xo

∫ π
xo

− π
xo

u sin ku du + yo
2

2π/yo

∫ π
yo

− π
yo

v sin lv dv (6)

On the other hand, it can be verified that

xo
2

2π/xo

∫ π
xo

− π
xo

u cos kudu+yo
2

2π/yo

∫ π
yo

− π
yo

v cos lvdv=0 (7)
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Fig. 1. (a) & (b) Aerial images with some shifts, (c) & (d) noisy sawtooth phase matrices corresponding to shifts of (7.3,5.6)
and (30.5,25.4) pixels, (e) & (f) one row of the phase matrices shown in (c) & (d), respectively.

and similarly

xo
2

2π/xo

∫ π
xo

− π
xo

udu + yo
2

2π/yo

∫ π
yo

− π
yo

vdv = 0 (8)

From (6), (7), and (8), and using the definition of the Dis-
crete Fourier Transform (DFT) based on Fourier series [4],
it follows immediately upon substituting u = n 2π

N and v =
m 2π

M that ϕkl is a DFT coefficient of the following discrete
periodic signal

pmn =

⎧⎨
⎩

2π
(
xo

n
N + yo

m
M

)
pm′n if m′ 2π

M = m 2π
M + J 2π

xo

pmn′ if n′ 2π
N = n 2π

N + J 2π
yo

(9)
where J is an arbitrary integer. �
Therefore P is a 2D sawtooth signal as opposed to the con-
tinuous phase difference in (2), which is a plane through the
origin. Figure 1 illustrates this result. The first illuminating
observation that can be made from this result is that the un-
wrapping of a 2-dimensional sawtooth signal is separable,
since its unwrapped matrix has to be rank-2. This implies
that a subspace approximation is not really required. The
second observation is that unwrapping is also an unneces-
sary step, since the motion parameters can be determined
simply by the number of cycles along each frequency axis.
For instance, since the period of the sawtooth signal along
the u-axis is 2π

xo
, there are xo repeated cycles along each

row of P, where xo may or may not be an integer. This
process of counting the number of cycles along the rows
and the columns of the phase matrix is essentially all that is
required to determine the local or the global motions.

2. SOLVING FOR LOCAL OR GLOBAL MOTIONS
As we showed above, the key to solve the problem is to
find how many cycles of the sawtooth phase difference fit in
the range [0, 2π] along each frequency axis. The number of
cycles i.e. xo and yo may or may not be integer values, and
are given by

xo =
cycles

2π
= N

2π

dP(m,n)

dn
and yo =

cycles

2π
= M

2π

dP(m,n)

dm

(10)
However, due to noise and the discontinuities of the saw-
tooth signal, counting the number of cycles per 2π using

the equations in (10) would lead to inaccurate results. To
overcome this problem, we need to use the fact that in a
window of width N and height M there are M × N data
points available for regression. Furthermore, the gradient at
the discontinuities along a row rm or a column cn may be
treated as outliers. Therefore, a robust estimator can be de-
signed to eliminate the influence of outliers and noise. We
will show the derivations for the columns of P. However,
the approach is equally applicable to the rows.

Essentially, we need to design an optimal filter h that
can compute the slope of the noisy sawtooth signal along the
columns of P. We will model the filter as a finite impulse
response (FIR) filter. Since a gradient filter is expected to
be anti-symmetric, we will assume that h is a type III FIR
filter, of length 2L + 1, i.e. h = [h1, ..., h2L+1]T . The
gradient of the nth column is then given by

Hcn = c′n (11)

where c′n = [c′L+1, ..., c
′
M−L]Tn is the gradient vector trun-

cated at both ends to avoid border artifacts, and H is a
(M − 2L) × M matrix given by

H =

⎡
⎢⎢⎢⎢⎣

hT 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 hT

⎤
⎥⎥⎥⎥⎦ (12)

For a general phase matrix, the problem would be a blind
one, since we would need to determine both H and c′n.
However, in our case, since P is a sawtooth signal, except
for a small number of discontinuities, we have c′n = 2π

M yol,
where l = [1, ..., 1]T is a vector of length M − 2L. As a re-
sult, after some algebraic manipulation, the equation in (11)
can be written in the homogeneous form as

C̃h̃ = 0 (13)
where

C̃=
[
C −2π

M
l
]
=

⎡
⎢⎢⎢⎣

c1 ... c2L+1 − 2π
M

c2 ... c2L+2 − 2π
M

... . . .
...

...
cn−2L ... cn − 2π

M

⎤
⎥⎥⎥⎦ (14)

and h̃ = [h1 . . . h2L+1 yo]
T .
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There are two important constraints that apply to C̃ and
h̃. By inspection, we can verify that C is a rank-2 ma-
trix (assuming discontinuities are due to outlying data), and
hence so is C̃. On the other hand, we know that for a noise-
free phase matrix, the filter h should be anti-symmetric, i.e.
hL+1+i = hL+1−i, for i = 1, ..., L and hL+1 = 0. There-
fore, we can formulate the problem as follows:

h̃opt = arg min ‖C̃h̃‖ + λ‖Ah‖ (15)

where λ is the regularization parameter, and A = [aij ] is a
(L + 1) × (2L + 1) matrix defined by

aij =
{

1 if i = j or i + j = 2L + 2
0 otherwise

(16)

This formulation is basically a semi-norm Tikhonov-Arsenin
regularization of the problem in (13). The first term im-
poses the rank constraint on C̃ by assuming that the last
column of C̃ is a constant, and the second term imposes
the anti-symmetry constraint on h. The solution is given by
h̃opt ∼ [hT

opt 1]T , where

hopt = (CT C + λAT A)−1Cl (17)

Note that, since our formulation in (15) is homogeneous,
the solution is found only up to a scale factor as indicated
by the ∼ notation. This scale ambiguity, however, can be
readily resolved by assuming that h is the discrete gradient
of a smoothing kernel that preserves the first moment. This
implies that the components of hopt should satisfy

2L+1∑
j=1

j∑
i=1

hi = 1 (18)

We now have the solution given by (17) and (18) up to an
unknown regularization parameter. The optimal value of
this parameter is given by the method of Generalized Cross
Validation (GCV), which amounts to minimizing

GCV(λ) =
‖(I − C(CT C + λAT A)−1CT )l‖2

(tr(I − C(CT C + λAT A)−1CT ))2
(19)

with respect to λ. In the existing literature, the minimizer of
(19) is usually obtained by using numerical techniques, e.g.
the quadrature rules and the Lanczos algorithm [5]. How-
ever, in our case, due to the rank constraint of C, we can
find a simplified closed-form solution.
Lemma Let K = CA†, where A† is the Moore-Penrose
pseudo-inverse of A. Let also VΣVT be the spectral de-
composition of KKT . A first order approximation of the
optimal minimizer of the GCV function in (19) is given by

λ∗ =
σ1

∑N−2L
j=2 s2

j

(N − 2L − 1)s2
1 −

∑N−2L
j=2 s2

j

(20)

where σ1 is the dominant eigenvalue in the diagonal matrix
Σ, and sj’s are the components of the vector VT l.
The proof is left out due to lack of space. �

Using (17), (18), and (20), we can compute a total num-
ber of T = (M − 2L) × N estimated values for yo (or
equivalently (N − 2L) × M values for xo). The question
now is how to use this highly redundant amount of informa-
tion to estimate yo and xo, robustly.

3. ROBUSTIFYING THE SOLUTION
The computed values for yo, i.e. yj

o, j = 1, . . . , T are noisy
and with outliers. The probability density function of the
contaminated yo can therefore be modeled as a mixture of
the inlying and the outlying densities. Assuming that these
two densities are normally distributed N (µi, σ

2
i ), i = 1, 2,

our model can be written as

p(yo|Θ) =
2∑

i=1

pipi(yo|θi) (21)

where pi is the prior probability that yo is drawn from the
distribution i, such that

∑2
i=1 pi = 1, θi = [pi, µi, σ

2
i ], and

pi(yo|θi) =
1√

2πσi

exp
(
− (yo − µi)2

2σ2
i

)
(22)

This clearly is a parametric model, and the parameter vec-
tor to be estimated is given by Θ = [p, µ1, σ

2
1 , µ2, σ

2
2 ]T ,

where p = p1 and p2 = 1 − p. A maximum likelihood
estimation of the parameter vector, and hence separation of
the inlying density can be done using the Expectation Max-
imization (EM) algorithm [6]. Separating the inlying val-
ues in this manner is essentially equivalent to truncating the
quadratic error in (15), which is known to yield a robust
technique. The following EM steps can be readily derived
for our mixture model in (21) using the general theory of
the EM algorithm. The t + 1 iteration is given by

• E-step: Estimate p(i|yj
o, Θt), given the current esti-

mate of the parameter set Θt. From Bayes’ law this
is given by

p(i|yj
o, Θ

t) =
pt

i pi(yj
o|θt

i)
p(yj

o|Θt)
=

pt
i pi(yj

o|θt
i)∑2

i=1 pi(y
j
o|θt

i)
(23)

• M-step: Update the parameters of the model to max-
imize the likelihood of the data [6].

pt+1
i =

1
N

T∑
j=1

p(i|yj
o, Θ

t) (24)

µt+1
i =

∑T
j=1 yj

o p(i|yj
o,Θ

t)∑T
j=1 p(i|yj

o, Θt)
(25)

σt+1
i =

(∑T
j=1 p(i|yj

o, Θ
t)(yj

o − µt+1
i )2∑T

j=1 p(i|yj
o, Θt)

) 1
2

(26)

Applying the above two steps iteratively to both yj
o and xj

o,
allows us to separate the inlying values from the outlying
ones. The mean of the inlying values can then be used as an
unbiased and robust estimation of the motion parameters.
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4. RESULTS AND DISCUSSION

We applied the technique to an extensive set of images,
some of which are shown below. Both global sub-pixel
registration problem and local motion (disparity) estima-
tion were evaluated. In both cases excellent results were
obtained.

For global registration, we used the approach described
in [1], to generate images with sub-pixel shifts, i.e. start-
ing from a real high resolution image, we lowpass filtered
and downsampled shifted versions of the image. Using ap-
propriate downsampling rates, shifts with sub-pixel contents
were produced. Figure 2 shows some of the images to which
the technique was applied. Results are shown in table 1
and are compared to those reported in [1]. The accuracy
was predominantly higher than [1], but also with less re-
quired computational time since inverse transforming is not
required.

Fig. 2. Some of the images used for simulation.

Image True Foroosh Proposed
Shifts et al. 2001 Method

(0.50, -0.50) (0.48,-0.51) (0.495,-0.496)
Paris (0.25, 0.50) (0.28,0.49) (0.256,0.499)

(-0.25, -0.50) (-0.25,-0.52) (-0.25,-0.51)
(0.0,0.75) (0.0,0.80) (0.0,0.745)

(0.167, -0.5) (0.152,-0.49) (0.16,-0.5)
Pentagon (0.67, 0.25) (0.69,0.33) (0.68,0.24)

(-0.33, -0.167) (-0.32,-0.15) (-0.34,-0.16)
(0.33, 0.33) (0.325,0.32) (0.333,0.328)

Table 1. Results for global shifts of the images in Figure 2

We also applied the technique to real data in a frame-
work using short-length Fourier transform. This would al-
low us to build a space-frequency representation of the data
directly in the Fourier domain, using the instantaneous fre-
quencies. We particularly applied the technique to some
rectified stereo pairs of aerial and indoor images. For recti-
fied stereo pairs the local motion is along the epipolar lines
that are typically warped and mapped to image scan lines.
Results are shown in Figures 3 and 4 for the Pentagon image
and the baseball image.

In conclusion, this paper shows that accurate results can
be obtained for sub-pixel registration directly in the Fourier
domain, even when applied to small image regions. Exam-
ples of Fourier imaging modalities that can benefit of such
approach are magnetic resonance imaging (MRI) [7, 8], and
synthetic aperture radar (SAR) [9].

(a) (b) (c)
Fig. 3. (a) & (b) Pentagon’s stereo pair, (c) space-frequency
representation.

(a) (b) (c)
Fig. 4. (a) & (b) Stereo pair of a baseball, (c) space-
frequency representation.
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