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ABSTRACT

The adoption of multiple macroblock partitions with variable block
sizes is one of the main reasons behind the superior coding effi-
ciency of H.264 video coding standard. Unfortunately, in motion
estimation phase, repeating Sum of Absolute Difference (SAD)
calculations for every possible block size incurs a heavy computa-
tional cost for the encoder. In this paper, in order to reduce the en-
coder complexity, we propose a hierarchical block matching based
motion estimation algorithm that uses a common set of SAD com-
putations for motion estimation of different block sizes. Based on
the hierarchical prediction and the median motion vector predictor
of H.264, the algorithm defines a limited set of candidate vectors;
and the optimal motion vectors for all partitions are chosen from
this common set. Simulation results show that hierarchical estima-
tion with SAD reusing reduces the total computations by a factor
of 17.6 with slight loss in coding efficiency.

1. INTRODUCTION

H.264 video coding standard has been shown to provide consid-
erably higher coding efficiency over such previous standards as
H.263 and MPEG-4 Visual [1]. One of the novelties contribut-
ing to H.264’s superior performance is a rich set of coding modes
to choose from for each macroblock [2]. These modes allow the
encoder to try different macroblock partitions, multiple reference
frames and inter/intra prediction methods in order to find a rate-
distortion optimal coding strategy for each macroblock. Unfortu-
nately choosing among these features incurs a substantial increase
in the computational complexity of the encoder.

Motion estimation (ME) contributes a significant portion to
the complexity of H.264 encoder. The use of different block sizes
for various macroblock partitions multiplies the amount of com-
putations. For different inter-coding modes, macroblocks (16×16
pixel) can be divided into two 16×8 or two 8×16 or four 8×8 sub-
blocks. Each 8×8 block can be further partitioned into 8×4, 4×8
and 4×4 subblocks. Rate-distortion optimal mode decision requires
estimating the motion vectors of each such subblock for all possi-
ble macroblock partitions. Since there exist 7 block sizes (16×16,
16×8, 8×16, 8×8, 8×4, 4×8, and 4×4), a naive full-search method
will require about 7 times more computations than the single block
type case.

Full-search method (FSM) can benefit from the fact that, if
the same search range is used for all block sizes, Sum of Absolute
Differences (SADs) computed for small block partitions (e.g. 4×4)
can be reused to construct the SADs for larger block partitions (e.g.
8×8 or 16×16). That is, for a given motion vector (MV), SADs

calculated for 4×4 subblocks can be added up to find the SADs of
larger subblocks. This will require additional memory to store the
computed SADs, but decrease the number of computations almost
to the level of single block type case.

Nevertheless, FSM is too complex for real-time implementa-
tion, and fast algorithms are needed to further reduce the com-
putational cost. In literature, the algorithms designed for H.264
[3, 4, 5, 6, 7] tend to focus on each block size separately, without
considering SAD reusability. For instance, [3] uses special search
patterns around block specific MV predictions for estimating the
optimal MVs of each macroblock partition. Since the predictions
and the optimizations are carried out almost independently for
each subblock, the SADs computed for different partitions will
correspond to different sets of candidate MVs. As a result, SAD
reuse will rarely be possible, which ends up wasting the computa-
tional gains of performing a fast search for each subblock.

In this paper, we propose a hierarchical ME algorithm that en-
ables SAD reuse to reduce ME complexity. For each 4×4 sub-
block, SADs are computed and stored at small groups of search
positions that are determined by the hierarchical MV prediction
process. For larger block sizes, SAD computations are carried out,
whenever possible, using only the stored values. In other words,
no extra search is performed for larger partitions. In order to min-
imize the loss of quality, the hierarchical estimation method is de-
signed in a way that makes good MV predictions for all subblocks
of different sizes. This is essential for the performance of the algo-
rithm, since we want to find the optimal solution without making
excessive searches for each partition. The median MV predictor of
H.264 is used to further improve the prediction accuracy. Details
of the algorithm are provided in section 2.

SAD reusing is also a crucial technique for achieving a real-
time hardware implementable H.264 encoder. When we consider
that the encoder will dedicate a certain amount of clock cycles
to ME module, worst-case complexity of a ME method becomes
more important than its average complexity. In other words, the
ME module needs to have enough clock cycles to finish the mo-
tion vector search in all possible cases. Worst-case complexity is
generally ignored in existing ME methods. Some algorithms [3]
try to minimize average number of computations by using various
early stopping criteria during SAD calculations. Others [4] use
simple measures to predict whether small macroblock partitions
can be optimal or not, and, if predicted not, they do not perform
ME for these partitions. Despite improving average complexity,
these techniques won’t have much better worst-case complexity
than FSM with SAD reuse. The use of hierarchical estimation to
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Fig. 1. The set of search locations for two 4×4 subblocks.

support SAD reuse enables our algorithm to decrease the number
of worst-case computations significantly, since all partitions are
investigated without extra computational cost.

Section 2 describes the details of the algorithm. Section 3 dis-
cusses the worst-case complexity and compare it with FSM with
reuse. The simulation results in Section 4 show that there is little
quality loss, despite a major reduction in complexity. We conclude
the paper in Section 5.

2. HIERARCHICAL MOTION ESTIMATION WITH SAD
REUSE

2.1. SAD Reuse for Macroblock Partitions
For rate-distortion optimal mode decision in H.264, the optimal
MV for each subblock is selected as the one that minimizes the
Lagrangian cost:

J (d) = SADBm×n(d) + λMR(d − pmed), (1)

where Bm×n is a subblock of size m×n, (m, n) ∈ {(4, 4), (4, 8),
(8, 4), (8, 8), (16, 8), (8, 16), (16, 16)}, and

SADBm×n(d) =

m,n∑

x=1,y=1

|c(x, y) − r(x + dx, y + dy)|, (2)

where d = (dx, dy) is the MV, c and r are current and reference
frames, respectively. For ease of notation, we assume the origin of
the axes coincides with the lower left corner of the block. Here,
λM is the lagrange multiplier for ME, R(d − pmed) specifies the
bitrate spent for coding MV difference information, and pmed is
the MV prediction used by H.264 during the coding process. If
multiple reference frames are used, the cost of coding the reference
frame index is added to the total Lagrangian cost.

SAD reuse is based on the simple observation that, for a given
MV d = (dx, dy), SAD of Bm×n can be decomposed into the
SADs of its 4×4 subblocks:

SADBm×n(d)=

m/4,n/4∑

k=1,
l=1

4k,4l∑

x=4k−3,
y=4l−3

|c(x, y)−r(x + dx, y + dy)|. (3)

Since all summations on the right are evaluated at the same MV
d, computing SADBm×n(d) requires computing the SADs of all
its 4×4 subblocks for MV d. More specifically, we define SAD
reusability as follows: given a macroblock B16×16, each of its 4×4
subblocks, Bi

4×4, 1 ≤ i ≤ 16, is assigned a set of MV candidates,
Si. In other words, SADBi

4×4
(d) is computed only if d ∈ Si.

Suppose Bm′×n′ ⊂ Bm×n means that Bm′×n′ is a subblock of
Bm×n. Then, SADBm×n(d) is available for block Bm×n if and
only if d ∈ Si for all Bi

4×4 ⊂ Bm×n.
Figure 1 and 2 illustrate how SAD reuse is done for a block

B8×4. In these figures, the sets Si contain not the search locations

B8×4
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Fig. 2. The set of search locations for B8×4.

but the MVs defined as the difference between the search locations
and the positions of the subblocks. In figure 2, the search locations
of B2

4×4 are shifted by 4 pixels to the left to compensate for the
distance between the upper left corners of the two 4×4 subblocks.
Figure 2 shows the common MVs and corresponding search posi-
tions that allow for SAD reuse for block Bi

8×4.
The design of the sets Si for each 4×4 subblock, Bi

4×4, con-
stitutes the most important part of our motion estimation strategy.
Over-populated sets, such as in FSM, have many common vectors
and SAD reuse will be frequent, but this increases the amount of
computations. Under-populated sets reduce complexity, but, with-
out enough common vectors, MV search might be too limited or
even not be possible for larger macroblock partitions.

Designing the sets Si can be viewed as designing good MV
predictors for the subblocks. In its most general form, our ME
method follows these steps:

1. Predict optimal MVs of some of the blocks Bm×n (The next
section explains this step in detail). Let’s call one such pre-
diction as pm×n.

2. Assign pm×n as a candidate vector to all subblocks of Bm×n.
That is, pm×n ∈ Si for all Bi

4×4 ⊂ Bm×n.
3. In order to refine the prediction, include a small number of

neighboring MVs of pm×n into the sets Si as well.
4. Compute and store SADBi

4×4
(d) for each d∈Si, 1≤ i≤16.

5. For each subblock Bm×n, compute the Lagrangian cost of
MV d if SADBm×n(d) is available (see the definiton of
SAD reusability). Choose the vector with the minimum
cost as the optimal MV for this subblock.

Contrary to other predictive algorithms, we don’t want to make
a separate MV prediction for each subblock, since this could over-
populate the sets Si. That’s why, our predictions need to consider
the motion of all macroblock partitions. Otherwise, there might be
significant performance loss. For instance, if the predictions are
selected based on 4×4 subblocks only, than the sets Si defined by
these vectors might not share common vectors that are needed for
performing MV search at larger block sizes. On the other hand,
if the predictions are based on the full 16×16 macroblock, than
SAD reuse is guaranteed. But this might lead to oversmoothing the
MV field, and we might lose coding efficiency when the optimal
solution is actually the 4×4 partition with sharply varying MVs for
each subblock. In other words, the predicted MVs should be close
to the optimal solution not just for a single partition but probably
for all partitions. Therefore, while choosing our predictors, we
need to incorporate the motion information from all block sizes.

Finding MV predictors that are good enough for all partitions
is a challenging problem. For a single block Bm×n, there exist
several alternatives: the MVs of spatial and temporal neighboring
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Fig. 3. Hierarchical motion estimation.

blocks, the median predictor of H.264, prediction using a hierar-
chical method or a fixed pattern, such as diamond or hexagonal
search, etc. Since we don’t want to over-populate our search sets,
we have to find a prediction method that yields a uniformly good
solution for all block sizes and partitions. The next section de-
scribes our approach to this problem.

2.2. Hierarchical MV Predictor

For achieving uniformly good MV predictions, we start our search
with the full macroblock, make an initial prediction for it and then
refine this prediction for the smaller subblocks. We propose a mod-
ified hierarchical block matching method to implement this top-
down approach. Hierarchical ME is low in computational cost and
provides robust MV predictions, especially at large block sizes. At
the top level of the hierarchy, the motion search is performed for
the full macroblock. At lower levels, the initial prediction is re-
fined in a way that reflects the varying motions of smaller block
partitions. This way, the final predictions can be seen as a compro-
mise between the optimal MVs of different block sizes.

Figure 3 illustrates the idea. The algorithm consists of the
following steps:

1. A 3-level pyramid is constructed using local sums of the
macroblock pixels. A 4×4 block at level l2 corresponds to
the 16×16 macroblock at level l0.

2. Full search is performed for this 4×4 block at level l2, where
the search range is [−R/4, R/4] (R is the search range of
the FSM).

3. If the MV prediction at level l2 is pl2 , 2pl2 is used as the
search center at level l1. This time, instead of refining the
prediction for the full block, MV search is carried out for
each of the four 4×4 blocks of level l1 (The search range is
[−R/8, R/8] around 2pl2 ). The search at level l1 yields 4
predictions, pj

l1
, 1 ≤ j ≤ 4 (see Figure 4).

4. Going from l1 to l0, we assign each 2pj
l1

as the MV predic-
tion of the corresponding 8×8 block and all of its subblocks.
At the end, the 16×16 macroblock is assigned 4 vectors, one
for each of its 8×8 subblock.

5. As discussed in the previous section, the sets Si are defined
around these predicted vectors.

The optimal vector at level l2 constitutes a good initial predic-
tion for the macroblock B16×16, when scaled by 4. The subblock
refinement at level l1 is aimed at updating this prediction such that
the final 4 predicted vectors reflect the motions of the 8×8 sub-
blocks that might be different from each other. At level l0, the
predicted MVs for all subblocks of all sizes will be refined accord-
ing to the sets Si and the SAD reusability. Note that, if the sets Si

l1

2pl2
p4

l1

p1
l1

p2
l1

p3
l1

Fig. 4. MV refinement at level l1.
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Fig. 5. Median predictor.

defined by these 4 vectors don’t provide a common set of MV can-
didates, then SAD computation and MV search at level l0 won’t
be possible for the full 16×16 block. In such cases, we claim that a
single MV is not likely to provide good motion compensation for
the macroblock and 16×16 partition doesn’t have to be considered
to find the optimal solution. Similar arguments can be made for the
16×8 and 8×16 subblocks, when the 2 corresponding vectors are
much different. These claims have to be validated by simulations.

For avoiding loss of coding efficiency, we need to make sure
we have a good estimate of the R-D optimal MV. Therefore MV re-
finement at each level of the pyramid is performed by minimizing
the Lagrangian cost, J (2kd) = SADlk(d)+λMR(2kd−pmed),
where SADlk is the SAD computed at level lk of the pyramid.

2.3. Median MV Predictor
It turns out that assigning a single prediction vector to an 8×8 block
and all of its subblocks is too restrictive for finding the optimal 4×4
and similar small-sized partitions. In other words, despite the re-
finement of level l1, the hierarchical method is still oversmoothing
the motion field. Therefore, we use the median predictor as an
additional predictor for each 4×4 subblock. Figure 5 shows the
neighbors used in median prediction. Then,

pE
med = Median(MVA, MVB , MVC). (4)

Median prediction is performed exactly as it is done for 4x4 blocks
in H.264 [8]; if the causal neighbors of the current block are al-
ready coded, their optimal MVs are used in the prediction.

Median predictor is needed to improve the algorithm’s success
at finding the optimal 4×4 partition. As long as the computed SADs
are reusable, this prediction will be useful for searching for other
partitions as well.

2.4. MV Refinement Around Predicted MVs
We use both the hierarchical prediction and the median prediction
to define the search locations Si. For each block Bi

4×4, let’s call
these vectors as pi

hme and pi
med. Then, the final Si is defined as

(see Figure 6):

Si = {(dx1, dx2) : |dxl − pi
hme(l)| ≤ R/8 or

|dxl − pi
med(l)| ≤ R/8, l = 1, 2}. (5)
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For each subblock, the Lagrangian cost is computed whenever
SAD reuse is possible. The macroblock partition and the MVs
that minimize the total cost are chosen as the optimal solution.

3. COMPLEXITY ANALYSIS
We analyze the worst-case complexity of our algorithm and com-
pare it to FSM with SAD reuse, for the case R = 16. The total
number of additions and subtractions is chosen as the measure of
complexity. For FSM, 31 operations are performed for 33×33
search locations of each 4×4 block. There are 25 subblocks of size
larger than 4×4, and each SAD reuse requires a single addition
(SAD of two 4×4 blocks are added to compute SAD of a 8×4 block
and so forth). The total computations are equal to 567369.

For our algorithm, pi
hme and pi

med produce 25 search loca-
tions each, and for worst-case analysis we assume these two sets
to be disjoint. For 4×4 blocks 31×16 operations, and for SAD
reuse 25 additions are needed for each of these 50 locations. The
pyramid level l1 contributes 25×31×4 operations, and l2 adds 81×31
more operations. The pyramid is constructed with 480 additions.
The total number is 32141. This corresponds to a speed-up factor
of 17.6.

This is a remarkable improvement when one considers that the
algorithm is rather simple in its current form and can be further
developed in many different ways, e.g. using diamond or hexag-
onal search patterns instead of rectangular. If average complexity
is chosen as the performance measure, techniques such as adap-
tive early termination of SAD computation [3] will increase this
speed-up factor to much higher levels.

4. SIMULATIONS AND RESULTS
The simulations are performed for R = 16, using video sequences
carphone (QCIF), foreman (CIF), mobile (SIF) and flowergarden
(SIF) at 30fps. All frames except the first one are coded as P-
frames. Two reference frames are allowed. The CAVLC entropy
coder is used, with quantization parameter values of QP = 32, 35,
38. For comparison to FSM, average PSNR loss in dB and percent-
age change in bitrate are reported in Table 1.

The results confirm the potential of our algorithm. At equal
bitrates, PSNR loss is less than 0.2 dB for all the tested sequences.
The loss is mainly due to inaccurate predictions for small partitions
such as 4×4. Median predictor helps to alleviate the problem, and
other predictors might also be considered to improve estimation
accuracy.

The algorithm performs especially well when the motion field
is smooth and the optimal partitions are usually larger than or equal
to 8×8. This confirms that the hierarchical predictor works as
expected and succeeds at predicting the motion of the 8×8 sub-
blocks. As mentioned before, it is not always possible to perform
MV search for subblocks of size 16×8, 8×16 and 16×16. However,

Table 1. Performance comparison with FSM.
δPSNR (dB) δbitrate(%)

carphone (QCIF) -0.09 1.1
foreman (CIF) -0.11 3.9
mobile (SIF) -0.03 0.5
garden (SIF) -0.02 1.0

this leads to only a marginal loss in PSNR, confirming our as-
sumption that, in such cases, optimal coding mode is rarely found
among these large partitions.

5. CONCLUSION AND FUTURE WORK
The use of small sized partitions makes a major contribution to the
coding gain of H.264 standard. Motion estimation has to check all
partitions in order to find the optimal block sizes and their MVs.
When SAD values computed for small blocks can be reused for
larger blocks, the worst-case complexity of the ME module is sig-
nificantly reduced. In order to avoid any loss in coding efficiency,
it is necessary to design good MV predictors that are suitable for
SAD reuse. In this paper, we proposed a modified hierarchical pre-
diction method, and showed that a high ME speed-up is achievable
with little performance loss.

Our current work is focused on better MV prediction meth-
ods. One alternative is to make multiple predictions at levels l2
and l1 of the hierarchy, and then choose the best one at level l0.
A more adaptive approach could be to decide during prediction
which block sizes are more likely to be optimal and then gear the
MV prediction towards these block sizes. This might be possible
by performing a simple analysis of the motion activity within the
macroblock.
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