
FAST AND ACCURATE MOTION ESTIMATION ALGORITHM

BY ADAPTIVE SEARCH RANGE AND SHAPE SELECTION

Toru YAMADA, Masao IKEKAWA, and Ichiro KURODA

Media and Information Research Laboratories, NEC Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki 211-8666, JAPAN

ABSTRACT
This paper presents a fast and accurate motion estimation

algorithm. To obtain accurate motion vectors while minimizing

computational complexity, we adjust the search range for each

frame and each block to suit the motion level of the video. An

appropriate search range for each frame is determined on the

basis of motion vectors and prediction errors obtained for the

previous frame. At each block, the search range is determined on

the basis of the search range of its frame and of the motion

vector values of all adjacent blocks for which those values have

already been obtained. With our algorithm, since narrow search

ranges are chosen for areas in which little motion occurs,

computational complexity can be reduced without degrading

estimation accuracy. Since wide search ranges are chosen for

areas of significant motion, good video-quality encoding can be

maintained. In the encoding of an SDTV size video, the addition

of range adjustment results in a reduction in the computational

complexity of motion estimation of roughly 65%, while

maintaining the same video quality.

1. INTRODUCTION
Video coding standards, such as MPEG-2, use motion

compensation to reduce inter-frame redundancy. In this motion

compensation, only prediction errors which differ from a

reference image are coded. The motion vectors needed to create

reference images are obtained by means of motion estimation, a

process for locating points at which prediction errors will be

minimum.

A full search (FS) algorithm, which searches all positions in a

search range, is optimal in terms of estimation accuracy, but its

computational complexity is quite high. To reduce this

computational complexity, various fast motion estimation

algorithms have been proposed, including the three-step

search(TSS)[2], the new three-step search(NTSS)[3], and the

four-step search(FSS)[4] algorithms. These algorithms are based

on the assumption that prediction error increases in monotonical

proportion to the distance of search points from points of

minimum prediction error. However, estimation accuracy with

these algorithms is likely to be unsatisfactory since that

assumption is often untrue [5].

Another approach to reducing computational complexity is to

adjust the search range size to suit the motion level of a video.

Among the various methods proposed for adjusting search

ranges[6]-[11], those in [6] and [7], a list of search range

candidates is previously prepared, and a single range is chosen

from it on the basis of either prediction error values or of the

motion vector values previously obtained for adjacent blocks.

Both of these methods suffer, however, from the fact that the

number of search-range candidates is insufficient to reflect

meaningfully the large number of variations in actual video

motion. By way of contrast, in [8], search ranges are calculated

directly, not chosen from candidate lists. Unfortunately, however,

horizontal and vertical search ranges cannot be calculated

independently. As a result, a wide search range in both

horizontal and vertical directions will be used even when, for

example, video motion is great only in the horizontal direction

alone. While the method proposed in [9] also adjusts search

range at each block, since it modifies only ±1 pixel from the

search range for the previous block, it cannot adapt to sudden

motion change. The methods proposed in [10] and [11] differ in

that they minimize search range by shifting the search start point,

but they are of limited value because their performance depends

on the reliability of each start point prediction.

Since motion in a single frame will vary from block to block,

it is necessary to adjust the search range at each block, and since

it will not be constant from scene to scene in a video sequence, it

is also necessary to adjust the search range at each frame.

Furthermore, since horizontal motion and vertical motion occur

independently, it is also necessary to adjust horizontal and

vertical search ranges independently. This paper presents an

algorithm able to do all these things. The search range for each

frame is determined on the basis of the accuracy of motion

estimation achieved in the previous frame. The smaller the

number of correct vectors obtained for a previous frame, the

wider the search range chosen for the frame that follows.

Conversely, so long as a large number of correct vectors are

obtained for a previous frame, and so long as none of them is

especially large, a narrow search range can be chosen. More

specifically, search range is determined on the basis of both the

sum of the absolutes of the motion vectors and the sum of the

prediction errors for the previous frame. While the search range

chosen for any given block will not exceed the search range

chosen for its frame, that range may be reduced from this

maximum on the basis of the motion vector values of those

adjacent blocks for which such vectors have already been

obtained. This makes it possible to adjust optimally both the area

and shape of each search range.

The proposed method achieves both fast and accurate motion

estimation. In the encoding of an SDTV size video, the addition

of such range adjustment results in a reduction in the

computational complexity of motion estimation of roughly 65%,

while maintaining the same video quality.

The subsequent sections of this paper are organized as

follows: Section 2 discusses the proposed algorithm’s method of

determining a search range for each frame, and it presents a

performance evaluation; Section 3 discusses the proposed

II - 8970-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

28
30
32
34
36
38
40
42
44

1 31 61 91 121 151 181 211

Frame Number

P
S

N
R

 [
d

B
]

Fig.1 PSNR per frame with a fixed ±32 pixel

search range (sports)

Fig.2 Search range selection

for individual frames.

algorithm’s method of determining a search range for each block,

and it presents a further performance evaluation; Section 4

summarizes our work.

2. SEARCH RANGE DECISION

FOR EACH FRAME

2.1. Proposed Algorithm
In motion estimation, motion vectors that exceed the search

range cannot be detected, and when this happens, since

sufficient motion compensation efficiency cannot be obtained,

video quality will be degraded in the encoding process. Figure 1

shows PSNR per frame when an SDTV size video was

encoded at 4 Mbps CBR and a fixed ±32 pixel search range was

adopted. The video sequence, from a sports program, included

both large and small motions. Hereafter, we refer to this

sequence as "sports." As may be seen in Fig.1, the PSNR from

the 40th frame to the 95th frame is degraded. This portion of the

sequence contained very large motions, for which a ±32 pixel

search range was insufficient, resulting in deterioration in both

motion compensation efficiency and PSNR. While such PSNR

degradation might be avoided with a wider search range, the

unneeded computational complexity created by this range at

scenes with only small motions would be wasteful.

 To avoid this problem, we have developed a method for

making adaptive search range decisions at each frame. Search

range is modified on the basis of the motion estimation results

for the previous frame. The search range for any given frame is

chosen from among three candidates, i.e., ±64, ±32, and ±16

pixels. These values are coincident with the maximum values of

describable motion vectors, as determined by an f_code of the

MPEG standard.

28

30

32

34

36

38

40

42

44

1 31 61 91 121 151 181 211
Frame Number

P
S

N
R

 [
d

B
]

0

16

32

48

64

80

A
d

o
p

te
d

 S
e
ar

ch
 R

an
g

e

[p
ix

el
s]

PSNR(±32Fix)

PSNR(Proposed)

Search Range

Fig.3 PSNR per frame with search ranges

adjusted at each frame (sports)

In search range selection, the sum of absolute vector values

(SumMV) and the sum of prediction errors (SumSAD) are first

calculated. To do this, the prediction error for each block is

calculated on the basis of the sum of the absolute difference

(SAD) between that block and a reference block. When this

SumSAD exceeds a certain threshold value, the largest search

range (±64 pixels) will be chosen for the next frame. When both

SumSAD and SumMV are smaller than certain threshold values,

the narrowest search range (±16 pixels) will be chosen for the

next frame. That is, each search range is determined by

comparing SumSAD and, at times, SumMV with predetermined

threshold values, as may be seen in Fig.2. In this figure, the

thresholds for SumMV are MVTh1 and MVTh2 (MVTh1 >

MVTh2), and the thresholds for SumSAD are SADTh1 and

SADTh2 (SADTh1 > SADTh2)

2.2. Performance Evaluation for the Proposed

Algorithm
We incorporated the proposed method into a software MPEG-2

encoder and compared its video quality with that for a

conventional approach. We encoded "sports" for the same

conditions as those which resulted in the graph seen in Fig.1,

and then calculated PSNR per frame. On the basis of results

obtained in a preliminary experiment, we determined (MVTh1,

MVTh2)=(41015 , 41010) and (SADTh1,

SADTh2)=(51035 , 51025) to be suitable thresholds for

SDTV size videos. Figure 3 shows the PSNR per frame. The

dotted line indicates values for the same fixed ±32 pixel search

range as was used for the results in Fig.1. The thick line

indicates search ranges chosen with the proposed method. As

may be seen in Fig.3, the wide search range (±64 pixels) chosen

for the scene from the 40th frame to the 95th frame resulted in

improved PSNR.

We next evaluated the relationship between computational

complexity and average PSNR, both for our method and for

fixed range values. To do this, we employed MPEG-2 encoder

software that fully optimizes the processor’s Intel architecture so

as to achieve fast encoding. We also employed a two-step

hierarchical search for fast and accurate estimation. In this

search, a full search was first executed on half-resolution images

obtained by sub-sampling. Next, refinement of the obtained

candidate vectors was executed on the basis of a narrow range

full search executed on original resolution images.

4)SADTh2<SumSAD<SADTh1 and

SumMV <MVTh1

Medium±32

1)SumSAD >SADTh1

3)SumSAD < SADTh2 and SumMV<MVTh2

3)SumSAD <SADTh2 and

2) SADTh2<SumSAD<SADTh1

Wide±64 Narrow±16

SumMV<MVTh2

SumSAD >SADTh1

II - 898

➡ ➡

0

1

2

3

4

5

6

7

8

9
C

P
U

 c
y

cl
es

 p
er

 s
ec

o
n

d
 o

f
m

o
ti

o
n

 e
st

im
at

io
n

[G
cy

cl
e]

34.2

34.4

34.6

34.8

35

35.2

35.4

P
S

N
R

[d
B

]

CPU cycle

PSNR

Fig.4 Comparison of CPU clock cycles

and average PSNR

Fig.5 Adjacent blocks used for search range decisions

Figure 4 shows average PSNR values for “sport” with respect

to CPU clock cycles per second of motion estimation on a

3.2GHz Pentium4 PC. With the proposed method, since a wide

search range (±64 pixels) was chosen for scenes with large

motions, more CPU cycles were needed than were needed with a

fixed ±32-pixel search range. Computational complexity was

45% less, however, than that with a fixed ±64-pixel search range.

Further, as may be seen in Fig.4, PSNR with the proposed

method was as high as that with a fixed ±64-pixel search range.

3. SEARCH RANGE DECISION

FOR EACH BLOCK

3.1. Proposed Algorithm
Since motion is not constant across a frame, varying from block

to block, computational complexity can be further reduced by

narrowing the search range for certain blocks below the

maximum represented by the range for the frame. In the

proposed method, a search range for each block is obtained in

the manner described below.

A search range SRySRx , is directly calculated on the

basis of a function of any adjacent motion vectors (left, upper

left, upper, or upper right) which have already been obtained. In

this paper, we use the function defined as:

xMVxMVxMVxMVaSRx 4321 ,,,max (1)

yMVyMVyMVyMVbSRy 4321 ,,,max (2)

where a and b are constant values, yMVxMV 11 , is the motion

vector of the left block, yMVxMV 22 , is the motion vector of

the upper left block, yMVxMV 33 , is the motion vector of the

0

20

40

60

80

100

0 1 2 3 4 5
a and b value

P
ro

b
a
b

il
it

y
 o

f
c
o
rr

e
c
t

v
e
c
to

r
d

et
ec

ti
o
n

[%
]

a

b

Fig.6 Probability of correct motion vector detection

(a) (b)

Fig.7 Examples of search range decisions

(U:Upper, UL:Upper Left, L:Left, UR:Upper Right)

upper block, and yMVxMV 44 , is the motion vector of the

upper right block (See Fig.5). The search range for the frame is

used as a maximum search range for each block; that is, the

search range for the block will not exceed the frame search

range.

When a and b values are small, search ranges will also be

small, as will computational complexity. In this case, however, it

will not be possible to obtain optimal motion vectors in scenes

with large motions. On the other hand, when a and b values are

large, search ranges will also be large. In this case, while it will

be possible to obtain optimal motion vectors in scenes with large

motions, much computational complexity will be required. That

is, it is necessary to determine optimal a and b values for a

desired balance between range and complexity. To do this, we

first examined the probability that correct vectors might be

detected for various a and b values, defining a correct vector as

one which would be obtained by a full-search algorithm with

fixed a ±64-pixel search range. We examined the probability that

the correct vectors would be included search ranges obtained by

means of (1) and (2). In this experiment, we used eight standard

sequences (“ballet”, “bus”, “carousel”, “cheer”, “flower”,

“football”, “mobile”, and “tennis”). Figure 6 shows the result of

our experiments. As may be seen, when a and b are 2.0, 94% of

the correct vectors can be obtained. Since this probability does

not change drastically when a and b are greater than 2.0, we use

a=b=2.0. Figure 7 (a) shows an example of search range

decisions at a=b=2.0. Search range is calculated as twice the

maximum absolute value of the four motion vectors in adjacent

blocks. With our proposed method, since search range is

calculated independently in the horizontal and vertical directions,

Search Range (±6, ±8)

L(-2, -4)

U(3, -2)

UL(1, 1)

UR(2, -3)

UL(-2, 0)

U(-10, -2)
UR(-5, -1)

L(-10, -2)

Search Range (±20, ±4)Left yMVxMV 11 ,

yMVxMV 33 , Upper Right

Upper Left

yMVxMV 22 ,

yMVxMV 44 ,

Block to be coded

Upper

Fixed

±8

Fixed

±16

Fixed

±32

Fixed

±64
Proposed

II - 899

➡ ➡

0

2

4

6

8

10

12
C

P
U

 c
y

cl
es

 p
er

 s
ec

o
n

d
 o

f
m

o
ti

o
n

 e
st

im
at

io
n

[G
cy

cl
e]

33

33.5

34

34.5

35

35.5

36

P
S

N
R

 [
d

B
]

CPU cycle

PSNR

Fig.8 Comparison of CPU cycles and PSNR (sports)

0

2

4

6

8

10

C
P

U
 c

y
cl

es
 p

er
 s

ec
o

n
d

 o
f

m
o

ti
o

n
 e

st
im

at
io

n

[G
cy

cl
e]

25

26

27

28

29

30

31

32

33

P
S

N
R

 [
d

B
]

CPU cycle

PSNR

Fig.9 Comparison of CPU cycles and PSNR (bus)

obtained search ranges change not only in size but also in shape

(horizontal and vertical ratio). For example, as may be seen in

Fig.7 (b), when adjacent blocks have a large vector in the

horizontal direction, a horizontally wide search range is obtained.

In general, since there is a correlation between motions in

adjacent blocks, we can predict that the current block to be

coded will also contain large motion in the horizontal direction,

and our method results in a search range chosen to suit this

prediction. Additionally, the choice here of a narrow search

range in the vertical direction helps avoid the creation of

unneeded computational complexity.

3.2. Performance Evaluation of the Proposed

Algorithm
In order to determine the relationship in our proposed method

between average PSNR and computational complexity, we

incorporated it into the previously described software MPEG-2

encoder and encoded "sports." Figure 8 shows CPU clock cycles

per second of motion estimation vs. average PSNR both for our

method and for fixed ranges. With our method, since the

calculated search range may often be narrower than the

maximum search range for any given block, CPU clock cycle

can be kept relatively low, as compared to those for large fixed

ranges: 65% less than those for a fixed ±64-pixel search range,

while maintaining the same video quality. With the proposed

algorithm, we can achieve almost as low computational

complexity as that of the TSS, while at the same time achieving

a roughly 1.2dB higher PSNR.

 We also conducted a similar comparative evaluation of

computational complexity vs. average PSNR for "bus." Figure 9

shows the results. Since "bus" does not include large motions, it

does not need a ±64-pixel search range. Good PSNR can be

achieved with a ±16-pixel search range. The proposed method

calculates optimal search ranges narrower than ±16-pixels, and

computational complexity can be reduced by 30% less than that

for a fixed ±16-pixel search range, which indicates that the

proposed method can also be effective for small-motion video

sequences.

4. CONCLUSION
In this paper, we have proposed an adaptive search range

decision algorithm for use with both frames and individual

blocks. It offers both fast and accurate motion estimation.

Simulation results show that when an SDTV size video is

encoded, the computational complexity of motion estimation can

be reduced by roughly 65% from that for a fixed wide search

range, while maintaining the same video quality.

5. REFERENCES
[1] ISO-IEC/JTC1/SC29/WG11, "Generic coding of moving

pictures and associated audio," IS13818-2, 1994.

[2] T. Koga, et al., "Motion compensated interframe coding for

video conferencing," Proc. National Telecommun. Conf., pp.

G5.3.1-5.3.5, 1981.

[3] R.Li, et al., "A new three-step search algorithm for block

motion estimation," IEEE Trans. Circuits Syst. Video Technol.,

vol.4, no.4, pp.438-442, Aug. 1994.

[4] L.M.Po and W.C.Ma, "A novel four-step search algorithm

for fast block motion estimation," IEEE Trans. Circuits Syst.

Video Technol., vol.6, no.3, pp.313-317, June 1996.

[5] H.S.Oh and H.K.Lee, "Adaptive adjustment of the search

window for block-matching algorithm with variable block size,"

IEEE Trans. Consumer Electronics, vol.44, no.3, pp.659-666,

Aug. 1998.

[6] Y.H.Choi and T.S.Choi, "Fast motion estimation techniques

with adaptive variable search range," IEICE Trans.

Fundamentals, Vol.E82-A, No.6, pp.905-910, June 1999.

[7] K.Ramkishor and S.Krishna, "Spatio-temporal correlation

based fast motion estimation algorithm for MPEG-2," Proc. of

Asilomar Conf. on Signals, Systems, and Computers, Vol.1,

pp.220-224, Nov. 2001.

[8] P.I.Hosur, "Motion adaptive search for fast motion

estimation," IEEE Trans. Consumer Electronics, vol.49, no.4,

pp.1330-1340, Nov. 2003.

[9] C.H.Lin, et al., "DSRA: A block matching algorithm for

near-real-time video encoding," IEEE Trans. Consumer

Electronics, Vol.43, No.2, pp.112-122, May 1997.

[10] L.Luo, et al., "A new prediction search algorithm for block

motion estimation in video coding," IEEE Trans. Consumer

Electronics, Vol.43, No.1, pp.56-61, Feb. 1997.

[11] K.L.Chung and L.C.Chang, "A new predictive search area

approach for fast block motion estimation," IEEE Trans. Image

Processing, Vol.12, No.6, pp.648-652, June 2003.

±8 ±16 ±32 ±64TSS Frame
Block
Frame FS

Fixed

Only

Proposed

±8 ±16 ±32 ±64 TSS Frame
Block
Frame FS

Fixed

Only

Proposed

127G

124G

II - 900

➡ ➠

