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ABSTRACT 
This paper presents a fast and accurate motion estimation 

algorithm. To obtain accurate motion vectors while minimizing 

computational complexity, we adjust the search range for each 

frame and each block to suit the motion level of the video. An 

appropriate search range for each frame is determined on the 

basis of motion vectors and prediction errors obtained for the 

previous frame. At each block, the search range is determined on 

the basis of the search range of its frame and of the motion 

vector values of all adjacent blocks for which those values have 

already been obtained. With our algorithm, since narrow search 

ranges are chosen for areas in which little motion occurs, 

computational complexity can be reduced without degrading 

estimation accuracy. Since wide search ranges are chosen for 

areas of significant motion, good video-quality encoding can be 

maintained. In the encoding of an SDTV size video, the addition 

of range adjustment results in a reduction in the computational 

complexity of motion estimation of roughly 65%, while 

maintaining the same video quality. 

1. INTRODUCTION 
Video coding standards, such as MPEG-2, use motion 

compensation to reduce inter-frame redundancy. In this motion 

compensation, only prediction errors which differ from a 

reference image are coded. The motion vectors needed to create 

reference images are obtained by means of motion estimation, a 

process for locating points at which prediction errors will be 

minimum. 

A full search (FS) algorithm, which searches all positions in a 

search range, is optimal in terms of estimation accuracy, but its 

computational complexity is quite high. To reduce this 

computational complexity, various fast motion estimation 

algorithms have been proposed, including the three-step 

search(TSS)[2], the new three-step search(NTSS)[3], and the 

four-step search(FSS)[4] algorithms. These algorithms are based 

on the assumption that prediction error increases in monotonical 

proportion to the distance of search points from points of 

minimum prediction error. However, estimation accuracy with 

these algorithms is likely to be unsatisfactory since that 

assumption is often untrue [5]. 

Another approach to reducing computational complexity is to 

adjust the search range size to suit the motion level of a video. 

Among the various methods proposed for adjusting search 

ranges[6]-[11], those in [6] and [7], a list of search range 

candidates is previously prepared, and a single range is chosen 

from it on the basis of either prediction error values or of the 

motion vector values previously obtained for adjacent blocks. 

Both of these methods suffer, however, from the fact that the 

number of search-range candidates is insufficient to reflect 

meaningfully the large number of variations in actual video 

motion. By way of contrast, in [8], search ranges are calculated 

directly, not chosen from candidate lists. Unfortunately, however, 

horizontal and vertical search ranges cannot be calculated 

independently. As a result, a wide search range in both 

horizontal and vertical directions will be used even when, for 

example, video motion is great only in the horizontal direction 

alone. While the method proposed in [9] also adjusts search 

range at each block, since it modifies only ±1 pixel from the 

search range for the previous block, it cannot adapt to sudden 

motion change. The methods proposed in [10] and [11] differ in 

that they minimize search range by shifting the search start point, 

but they are of limited value because their performance depends 

on the reliability of each start point prediction. 

Since motion in a single frame will vary from block to block, 

it is necessary to adjust the search range at each block, and since 

it will not be constant from scene to scene in a video sequence, it 

is also necessary to adjust the search range at each frame. 

Furthermore, since horizontal motion and vertical motion occur 

independently, it is also necessary to adjust horizontal and 

vertical search ranges independently. This paper presents an 

algorithm able to do all these things. The search range for each 

frame is determined on the basis of the accuracy of motion 

estimation achieved in the previous frame. The smaller the 

number of correct vectors obtained for a previous frame, the 

wider the search range chosen for the frame that follows. 

Conversely, so long as a large number of correct vectors are 

obtained for a previous frame, and so long as none of them is 

especially large, a narrow search range can be chosen. More 

specifically, search range is determined on the basis of both the 

sum of the absolutes of the motion vectors and the sum of the 

prediction errors for the previous frame. While the search range 

chosen for any given block will not exceed the search range 

chosen for its frame, that range may be reduced from this 

maximum on the basis of the motion vector values of  those 

adjacent blocks for which such vectors have already been 

obtained. This makes it possible to adjust optimally both the area 

and shape of each search range. 

The proposed method achieves both fast and accurate motion 

estimation. In the encoding of an SDTV size video, the addition 

of such range adjustment results in a reduction in the 

computational complexity of motion estimation of roughly 65%, 

while maintaining the same video quality.  

The subsequent sections of this paper are organized as 

follows: Section 2 discusses the proposed algorithm’s method of 

determining a search range for each frame, and it presents a 

performance evaluation; Section 3 discusses the proposed  
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Fig.1 PSNR per frame with a fixed ±32 pixel 

search range (sports) 

Fig.2 Search range selection  

for individual frames. 

algorithm’s method of determining a search range for each block, 

and it presents a further performance evaluation; Section 4 

summarizes our work. 

2. SEARCH RANGE DECISION  

FOR EACH FRAME 

2.1. Proposed Algorithm
In motion estimation, motion vectors that exceed the search 

range cannot be detected, and when this happens, since 

sufficient motion compensation efficiency cannot be obtained, 

video quality will be degraded in the encoding process. Figure 1 

shows PSNR per frame when an SDTV size video was 

encoded at 4 Mbps CBR and a fixed ±32 pixel search range was 

adopted. The video sequence, from a sports program, included 

both large and small motions. Hereafter, we refer to this 

sequence as "sports." As may be seen in Fig.1, the PSNR from 

the 40th frame to the 95th frame is degraded. This portion of the 

sequence contained very large motions, for which a ±32 pixel 

search range was insufficient, resulting in deterioration in both 

motion compensation efficiency and PSNR. While such PSNR 

degradation might be avoided with a wider search range, the 

unneeded computational complexity created by this range at 

scenes with only small motions would be wasteful. 

   To avoid this problem, we have developed a method for 

making adaptive search range decisions at each frame. Search 

range is modified on the basis of the motion estimation results 

for the previous frame. The search range for any given frame is 

chosen from among three candidates, i.e., ±64, ±32, and ±16 

pixels. These values are coincident with the maximum values of 

describable motion vectors, as determined by an f_code of the 

MPEG standard. 
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Fig.3 PSNR per frame with search ranges 

adjusted at each frame (sports) 

In search range selection, the sum of absolute vector values 

(SumMV) and the sum of prediction errors (SumSAD) are first 

calculated. To do this, the prediction error for each block is 

calculated on the basis of the sum of the absolute difference 

(SAD) between that block and a reference block. When this 

SumSAD exceeds a certain threshold value, the largest search 

range (±64 pixels) will be chosen for the next frame. When both 

SumSAD and SumMV are smaller than certain threshold values, 

the narrowest search range (±16 pixels) will be chosen for the 

next frame. That is, each search range is determined by 

comparing SumSAD and, at times, SumMV with predetermined 

threshold values, as may be seen in Fig.2. In this figure, the 

thresholds for SumMV are MVTh1 and MVTh2 (MVTh1 > 

MVTh2), and the thresholds for SumSAD are SADTh1 and 

SADTh2 (SADTh1 > SADTh2) 

2.2. Performance Evaluation for the Proposed 

Algorithm
We incorporated the proposed method into a software MPEG-2 

encoder and compared its video quality with that for a 

conventional approach. We encoded "sports" for the same 

conditions as those which resulted in the graph seen in Fig.1, 

and then calculated PSNR per frame. On the basis of results 

obtained in a preliminary experiment, we determined (MVTh1, 

MVTh2)=( 41015 , 41010 ) and (SADTh1, 

SADTh2)=( 51035 , 51025 ) to be suitable thresholds for 

SDTV size videos. Figure 3 shows the PSNR per frame. The 

dotted line indicates values for the same fixed ±32 pixel search 

range as was used for the results in Fig.1. The thick line 

indicates search ranges chosen with the proposed method. As 

may be seen in Fig.3, the wide search range (±64 pixels) chosen 

for the scene from the 40th frame to the 95th frame resulted in 

improved PSNR. 

We next evaluated the relationship between computational 

complexity and average PSNR, both for our method and for 

fixed range values. To do this, we employed MPEG-2 encoder 

software that fully optimizes the processor’s Intel architecture so 

as to achieve fast encoding. We also employed a two-step 

hierarchical search for fast and accurate estimation. In this 

search, a full search was first executed on half-resolution images 

obtained by sub-sampling. Next, refinement of the obtained 

candidate vectors was executed on the basis of a narrow range 

full search executed on original resolution images. 

4)SADTh2<SumSAD<SADTh1 and 

SumMV <MVTh1 

Medium±32 

1)SumSAD >SADTh1 

3)SumSAD < SADTh2 and SumMV<MVTh2 

3)SumSAD <SADTh2 and 

2) SADTh2<SumSAD<SADTh1 

Wide±64 Narrow±16 

SumMV<MVTh2

SumSAD >SADTh1 
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Fig.4 Comparison of CPU clock cycles 

and average PSNR 

Fig.5 Adjacent blocks used for search range decisions 

Figure 4 shows average PSNR values for “sport” with respect 

to CPU clock cycles per second of motion estimation on a 

3.2GHz Pentium4 PC. With the proposed method, since a wide 

search range (±64 pixels) was chosen for scenes with large 

motions, more CPU cycles were needed than were needed with a 

fixed ±32-pixel search range. Computational complexity was 

45% less, however, than that with a fixed ±64-pixel search range. 

Further, as may be seen in Fig.4, PSNR with the proposed 

method was as high as that with a fixed ±64-pixel search range.  

3. SEARCH RANGE DECISION  

FOR EACH BLOCK 

3.1. Proposed Algorithm 
Since motion is not constant across a frame, varying from block 

to block, computational complexity can be further reduced by 

narrowing the search range for certain blocks below the 

maximum represented by the range for the frame. In the 

proposed method, a search range for each block is obtained in 

the manner described below.  

A search range SRySRx ,  is directly calculated on the 

basis of a function of any adjacent motion vectors (left, upper 

left, upper, or upper right) which have already been obtained. In 

this paper, we use the function defined as: 

xMVxMVxMVxMVaSRx 4321 ,,,max   (1) 

yMVyMVyMVyMVbSRy 4321 ,,,max   (2) 

where a and b are constant values, yMVxMV 11 ,  is the motion 

vector of the left block, yMVxMV 22 ,  is the motion vector of 

the upper left block, yMVxMV 33 ,  is the motion vector of the  
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Fig.6 Probability of correct motion vector detection  

(a)                                        (b) 

Fig.7 Examples of search range decisions 

(U:Upper, UL:Upper Left, L:Left, UR:Upper Right) 

upper block, and yMVxMV 44 ,  is the motion vector of the 

upper right block (See Fig.5). The search range for the frame is 

used as a maximum search range for each block; that is, the 

search range for the block will not exceed the frame search 

range. 

When a and b values are small, search ranges will also be 

small, as will computational complexity. In this case, however, it 

will not be possible to obtain optimal motion vectors in scenes 

with large motions. On the other hand, when a and b values are 

large, search ranges will also be large. In this case, while it will 

be possible to obtain optimal motion vectors in scenes with large 

motions, much computational complexity will be required. That 

is, it is necessary to determine optimal a and b values for a 

desired balance between range and complexity. To do this, we 

first examined the probability that correct vectors might be 

detected for various a and b values, defining a correct vector as 

one which would be obtained by a full-search algorithm with 

fixed a ±64-pixel search range. We examined the probability that 

the correct vectors would be included search ranges obtained by 

means of (1) and (2). In this experiment, we used eight standard 

sequences (“ballet”, “bus”, “carousel”, “cheer”, “flower”, 

“football”, “mobile”, and “tennis”). Figure 6 shows the result of 

our experiments. As may be seen, when a and b are 2.0, 94% of 

the correct vectors can be obtained. Since this probability does 

not change drastically when a and b are greater than 2.0, we use 

a=b=2.0. Figure 7 (a) shows an example of search range 

decisions at a=b=2.0. Search range is calculated as twice the 

maximum absolute value of the four motion vectors in adjacent 

blocks. With our proposed method, since search range is 

calculated independently in the horizontal and vertical directions, 

Search Range (±6, ±8) 

L(-2, -4) 

U(3, -2) 

UL(1, 1) 

UR(2, -3) 

UL(-2, 0) 

U(-10, -2) 
UR(-5, -1)

L(-10, -2) 

Search Range (±20, ±4)Left yMVxMV 11 ,

yMVxMV 33 , Upper Right 

Upper Left 

yMVxMV 22 ,

yMVxMV 44 ,

Block to be coded

Upper  

Fixed

±8

Fixed

±16

Fixed

±32

Fixed 

±64
Proposed
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Fig.9 Comparison of CPU cycles and PSNR (bus)

obtained search ranges change not only in size but also in shape 

(horizontal and vertical ratio). For example, as may be seen in 

Fig.7 (b), when adjacent blocks have a large vector in the 

horizontal direction, a horizontally wide search range is obtained. 

In general, since there is a correlation between motions in 

adjacent blocks, we can predict that the current block to be 

coded will also contain large motion in the horizontal direction, 

and our method results in a search range chosen to suit this 

prediction. Additionally, the choice here of a narrow search 

range in the vertical direction helps avoid the creation of 

unneeded computational complexity. 

3.2. Performance Evaluation of the Proposed 

Algorithm
In order to determine the relationship in our proposed method 

between average PSNR and computational complexity, we 

incorporated it into the previously described software MPEG-2 

encoder and encoded "sports." Figure 8 shows CPU clock cycles 

per second of motion estimation vs. average PSNR both for our 

method and for fixed ranges. With our method, since the 

calculated search range may often be narrower than the 

maximum search range for any given block, CPU clock cycle 

can be kept relatively low, as compared to those for large fixed 

ranges: 65% less than those for a fixed ±64-pixel search range, 

while maintaining the same video quality. With the proposed 

algorithm, we can achieve almost as low computational 

complexity as that of the TSS, while at the same time achieving 

a roughly 1.2dB higher PSNR.

   We also conducted a similar comparative evaluation of 

computational complexity vs. average PSNR for "bus." Figure 9 

shows the results. Since "bus" does not include large motions, it 

does not need a ±64-pixel search range. Good PSNR can be 

achieved with a ±16-pixel search range. The proposed method 

calculates optimal search ranges narrower than ±16-pixels, and 

computational complexity can be reduced by 30% less than that 

for a fixed ±16-pixel search range, which indicates that the 

proposed method can also be effective for small-motion video 

sequences. 

4. CONCLUSION 
In this paper, we have proposed an adaptive search range 

decision algorithm for use with both frames and individual 

blocks. It offers both fast and accurate motion estimation. 

Simulation results show that when an SDTV size video is 

encoded, the computational complexity of motion estimation can 

be reduced by roughly 65% from that for a fixed wide search 

range, while maintaining the same video quality. 
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