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ABSTRACT

Motion information is essential in many computer vision and 

video analysis tasks.  Since MPEG is still one of the most 

prevalent formats for representing, transferring and storing video 

data, the analysis of its motion field is important for real time 

video indexing and segmentation, event analysis and 

surveillance applications. Our work considers the problem of 

improving the optical flow field in MPEG sequences. We 

address the issues of robust, incremental, dense optical flow 

estimation by combining information from two different velocity 

fields: the available MPEG motion field and the one inferred by 

a multiresolution robust regularization technique applied on the 

DC coefficients. Thus, the regularization technique is based only 

on information that is directly available in the compressed 

stream avoiding therefore the time and memory consuming 

decompression. We extend standard techniques by adding a 

temporal continuity and an MPEG consistency constraint, both 

as mathematical constraints in the objective function and as 

hypothesis tests for the presence of motion discontinuities. Our 

approach is shown to perform well over a range of different 

motion scenarios and can serve as a basis for efficient video 

analysis tasks. 

1. INTRODUCTION 

Analyzing motion patterns is essential for understanding visual 

surroundings. Representative applications of motion analysis 

include video interpolation, coding and transcoding, robotic 

vision, video indexing, medical imaging and super-resolution 

reconstruction [3, 6]. Direct processing in the compressed 

domain is essential due to the huge amount of encoded digital 

data available today [7, 8]. Nevertheless, several limitations are 

posed: Low-detail information due to lower resolution, 

oversmoothed spatial and motion structures, vaguely defined 

spatial and motion borders, intrinsic errors in the MPEG motion 

vectors.  

The usual starting point for gradient-based velocity 

estimation is to assume that the intensities are shifted (locally 

translated) from one frame to the next and that the shifted 

intensity values are conserved (data conservation principle), i.e. 
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where u, v denote the horizontal and vertical optical flow vector 

components and t is small. This constraint implies that the 

intensity of a moving point in the image plane remains constant 

along the trajectory of the point in time. Gradient based methods 

use a linear approximation of Eq. (1) and obtain the Optical 

Flow Constraint Equation (OFCE) 
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where yx II ,  indicate partial derivatives of the brightness 

function with respect to x and y and It indicates the partial 

derivative over time. The generalized aperture problem [1] that 

occurs mainly due to lack of sufficient intensity variation within 

local regions is handled by the addition of a spatial coherence 

assumption in the form of a regularizing term. Generally, the 

challenge is to achieve high robustness against strong 

assumption violations commonly met in real sequences. Several 

authors propose an extension of conventional techniques using 

robust statistics [1, 4]. We focus on the work of Black & 

Anandan, [1], and its extension towards dense optical flow 

recovery in compressed video.  

We are dealing with the efficient combination of gradient-

based and block matching motion estimation techniques under a 

single robust regularization framework to allow the generation 

of an improved motion field for an MPEG stream. In our 

approach we attempt to develop an efficient method that 

combines only their advantages over these regions in order to 

recover the true underlying motion as correct as possible. The 

novelty of our approach focuses on the fusion of available 

(MPEG) and generated (gradient-based) motion information and 

the use of new constraints on the motion field in the form of 

regularizing factors in the objective function. 

2. DENSE ESTIMATION OF OPTICAL FLOW IN THE 

COMPRESSED DOMAIN  

We start the presentation of our approach by realizing that most 

velocity estimation algorithms suffer from the initial value 

problem. Most optimization techniques fail, if the initial estimate 

of the solution is far from optimal. The MPEG standard provides 

valuable motion information that can be used to provide a 

“good” initial solution, namely the encoded MPEG motion 

vectors. Although not accurate, especially at the motion borders 

and homogenous regions, these motion vectors are something 

“more” than a crude initial motion field. To be used in this 

framework, the encoded MPEG motion vectors are transformed 

to a unified backward-predicted reference (section 2.1.1). In 

order to avoid full decompression of the MPEG stream we apply 

our robust estimation technique to the extracted DC images 

(section 2.1.1).  

The exclusive operation in the compressed domain 

introduces several limitations. The low intensity resolution (DC 

block level) provides low detail information and produces 

spatially oversmoothed regions. Additionally, the intrinsic errors 

in the available MPEG motion vectors generate noisy areas and 

vaguely defined motion borders in the motion field. Thus, we 

need to incorporate additional motion constraints in order to 

compensate for these inefficiencies.  
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2.1 MPEG Information Extraction 

The MPEG stream carries both motion and intensity information 

of the underlying scene. Motion is represented by a field of 

motion vectors and intensity is encoded into a set of Discrete 

Cosine Transform (DCT) coefficients. Processing in the 

compressed domain reduces the amount of effort involved in full 

decompression and keeps the storage cost low. 

DCT coefficients are readily accessible for I frames, but they 

must be estimated for P and B frames. In essence, the DCT 

coefficients of the 1616  macroblock (MB) area of the 

reference frame that the current P or B block was predicted from 

need to be calculated. Since the DCT is a linear transform, the 

DCT coefficients of the corresponding MB in the reference 

frame can be calculated from the four neighbouring MBs that 

overlap this reference MB, albeit with substantial computational 

expense. We incorporate the technique proposed by Yeo & Liu, 

[5] to calculate reasonable approximations to the DC coefficients 

of a MB of a P or B frame.  

The MPEG frames may be of different types, i.e. I (no 

motion information), P (forward predicted) or B (backward 

prediced), and can occur in a variety of GOP (Group Of 

Pictures) patterns. An I frame has no motion vectors assigned to 

it in contrast to P (max one MV for every MB) or B (max two 

MVs for every MB) frames. We adopt the approach of Kobla et 

al. [2] to produce a unified-reference set of motion vectors that 

is independent of the frame type and the direction of prediction. 

This method represents each motion vector as a backward 

predicted vector with respect to the next frame, independently of 

frame type. 

2.2 Construction of the Objective Function 

Under the framework of our approach, we view the formulation 

and solution of the OFCE in relation to constraints provided by 

the available unified reference MPEG field. Motivated by a joint 

consideration of Bayesian and regularization approaches, we 

formulate our objective function as the combination of observed

(data term) and a priori (smoothness constraints) information. 

Through the smoothness constraints we incorporate prior 

information regarding the spatial and temporal distribution of the 

estimated motion field, as well as the influence of the available 

MPEG motion field. Overall, the proposed objective function is 

formulated as: 
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 (3) 

initialized at the unified reference MPEG field, where 

],[ vuu , u  is the previous velocity estimate i with 

MTSDi ,,,  are weight factors and D, S, T, M stand for 

data, smoothness, temporal and MPEG indices, respectively. We 

use a Lorentzian robust error function ),(x , as in [1], to 

resist against outliers yielding the following formulas for each 

separate energy part of Eq. (3): 
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 are the scale parameters of the robust estimator and 

Gs represents the north, south, east and west neighbors of n in 

the grid. Given this robust formulation, many optimisation 

techniques can be employed to recover the motion estimates. We 

use Simultaneous Over-Relaxation (SOR) to find the local 

minima and Graduated Non-Convexity (GNC) to find a globally 

optimal solution. The general idea is to take the non-convex 

objective function and construct a convex approximation. In the 

case of the Lorentzian estimator, this can be achieved by making 

the scale parameters ( D , S , T ) sufficiently large. This 

approximation is then minimized using a coarse-to-fine 

(multiresolution) SOR technique. Successively better 

approximations of the true objective function are then 

constructed by altering the  values, and minimized starting 

from the solution of the previous approximation. The 

multiresolution scheme of SOR makes the handling of large 

displacement in the scene more effective. 

The individual constraints can be adaptively tuned, through 

their individual weights. We a selective (on-off) combination of 

the different terms in (3) that leads to computationally fast 

results, while retaining adequate accuracy.

2.3 Constraint-Weight Selection 

The combination of the two motion fields, referring to the 

generated optical flow and the MPEG motion field, should take 

advantage of their competing nature in the overall criterion and 

improve the solution at the areas of their mismatch. 

In order to employ the complementary nature of the motion 

fields under consideration and the advantages it offers, we 

design a method to balance the objective function’s terms. It 

operates on the notion of inliers/outliers on the individual 

criteria, for updating and improving the motion field. We use 

two types of outliers, one referring to data coherence and the 

other to spatial smoothness, since they provide different 

information regarding the motion between two frames. Outliers 

are detected wherever the values of the data and spatial 

smoothness terms are greater than the outlier thresholds D  and 

S , which in the case of a Lorentzian estimator are calculated as 

D2  and S2  respectively [1].  In this form, the 

consistency of a motion field with the differential OFCE can be 

readily rejected at the points of outliers in the data term (data

outliers). In addition, discontinuities in the motion field can be 

detected at the points of outliers with respect to spatial 

smoothness (spatial outliers).

The motivation for using such a selective combination of 

constraints is to utilize the available information so as to 1) 

reduce the redundancy and the computational complexity of the 

algorithm and 2) to increase the effect of the MPEG motion field 

wherever it is “most likely” close to the true motion field. In this 

scheme, we enforce the MPEG at regions of motion 

discontinuities, as well as on smooth regions where the MPEG 

field does not violate the OFC. The decision about motion 

boundary and smooth regions is only activated when supported 

by both prior fields, namely the MPEG and previous (temporal) 

fields. It has to be mentioned here that the temporal motion field 

is supposed to be zero at the beginning. Moreover, in order to 

further assert the validity of the MPEG field, we initialize the 
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data constraint with the unified reference MPEG motion vectors 

that form the initial solution to our estimation approach. If the 

result is an inlier, then we may expect that the MPEG vector 

represents relative well the underlying motion, which means that 

it almost satisfies the OFCE.  The weight selection scheme is 

illustrated in Fig. 1. A motion vector of the previous frame’s 

motion field cannot be a spatial outlier. The case where the 

MPEG MV is spatial outlier and the previous MV is a spatial 

inlier is not depicted in Fig. 1 for simplicity. When the latter is 

the case we actually check if the MPEG MV is a data outlier or 

not and continue as shown in Fig. 1. 

2.4 Scales Estimation 

We use an automatic method for selecting the initial and final 

scales for the robust data conservation and smoothness 

constraints. As indicated before, the initial solution to our 

algorithm is the available MPEG motion field, which in a 

Bayesian framework can be viewed as a priori information. 

Assuming that most of these vectors are correct, i.e. fit well the 

data conservation term, we are based on them to obtain scale 

estimates. We initialize the OFCE with the MPEG motion 

vectors’ components (u, v) and obtain a value for each pixel in 

the frame. We repeat this procedure for the smoothness 

constraint equation. The resulting distributions are assumed -

contaminated Gaussian with means i and standard 

deviations i . This Gaussian assumption holds well for small 

residuals, which are located around the mean, but fails for large 

residuals forming the long tails of the distribution, which are due 

to wrong estimates of the MPEG vectors or to large 

inconsistencies between the matching and the OFC criteria. 

Therefore, we calculate an initial global scale 1  by fitting a 

Gaussian distribution, having in mind that this scale estimate can 

be “crude” and only used to generate the convex approximation 

of the objective function. Afterwards, we make a second fit on 

the residuals inside the interval 11 ,  and obtain a more 

accurate Gaussian fit with standard deviation 2 . We then relate 

the 1  and 2  with the max and min scales of the Lorentzian 

functions used to model the data and smoothness terms. The 

attempted correspondence between Gaussian and Lorentzian 

scales can be justified by realizing that at small deviations the 

Lorentzian distribution approximates well the Gaussian 

(a) (b) 

(c) (d) 

Fig. 2 (a) DC image, optical flow for (b) BA technique, (c) 

median filtered unified reference MPEG, (d) selective 

combination

 The MPEG consistency and temporal continuity constraints 

impose a requirement to the derived motion field for being 

smoothly varying around the MPEG and temporal fields, 

respectively. Thus, the utilizing and consequently the structure 

of these constraints should resemble those of the smoothness 

constraint. Based on this reasoning, we use the same scales for 

the smoothness, MPEG and temporal constraints. 

3. EXPERIMENTS

We processed several real video sequences to test the validity of 

our approach. We show only the obtained results for two well-

known sequences. One MV per MB is calculated according to 

the objective function (2.2) and the rest are interpolated over the 

pixel grid using the nearest neighbor technique. 

The “coast guard” shows a complex scene with different 

objects present. Fig. 2 depicts a zoomed region of a “coast 

guard” frame, showing the global optical flow field in terms of 

its velocity magnitude. The challenge here is to distinguish the 

boats without being affected by the global motion pattern 

(camera pan). The optical flow obtained by Black & Anandan’s 

(BA) technique is overall smooth, as expected due to the camera 

pan. The non-informative temporal derivative computation due 

to the small temporal variation from frame to frame (short 

objects’ motion) makes the boats indistinguishable. For 

comparison purposes, we further process the unified reference 

MPEG field by a vector median filter so as to remove spurious 

outliers. The filtered unified reference MPEG field provides a 

more distinct representation of the three motions present in the 

scene. It assigns almost zero velocities to the small boat so that 

Current

MPEG

motion field

Projected

Previous

Frame’s

motion field

Use MPEG MVs

If MPEG MV

is Data Outlier

If both MVs  are

spatial inliers

Smooth Region

If both MVs  are

spatial outliers

Motion
Discontinuity

YES

NO

Minimize OFCE

Fig. 1 Schematic diagram for weight decision 
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one can distinguish it from the global pan. The motion of the 

bigger boat is obvious. As expected, the MPEG field suffers 

from motion artifacts in homogenous regions, as illustrated by 

“gaps” and intensity discontinuities. The proposed approach 

provides similar results at the moving borders and seems to be 

more accurate. The global motion pattern is correctly assigned to 

the background, as shown by the smooth background areas. 

(a) (b)

(c) (d)

Fig. 3 (a) DC image; Optical flow for  (b) our technique, (c) 

median filtered unified reference MPEG, (d) BA technique 

Same conclusions are drawn from the “table tennis”

sequence, as can be confirmed by the results in Fig. 3. In order 

to demonstrate and test the potential of the proposed method in 

motion characterization we further implemented a least squares 

regression algorithm on the last sequence. The flow is computed 

in a blockwise manner using a 6 parameter affine model:  

yaxaa

yaxaa
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210
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where a are the parameters of the model. 

Fig. 4 illustrates the obtained results for two frames. The 

proposed method (first row) generates a smooth motion field and 

hence recovers correctly the global motion pattern. Although not 

with high accuracy, the different motions of the ball, bat and arm 

can be clearly distinguished.  The same regression approach on 

the median filtered unified reference motion field (second row) 

presents many “gaps” due to false motion vectors and proves to 

be very noisy and inconsistent. 

4. CONCLUSIONS 

In this paper we introduce a framework for efficiently 

combining two motion estimation methods, compensating for 

their possible artifacts, and generating an improved, dense 

MPEG optical flow field. Our approach is limited from the 

quality of initial information we use, namely the DC images and 

the motion field. The use of DC images saves computational 

time due to the small spatial extend and the avoidance of 

decompression, but reflects strong smoothness in the intensity 

image. The combination of MPEG and temporal motion fields 

seems promising and is worth further analysis. Hard to face 

cases, like occlusion/disocclusion, illumination shading, 

appearance of new object etc. may be handled more efficiently 

with appropriate MPEG-temporal information fusion. 

Acknowledgements 

This work was supported by the EU STREP project: Improving 

airport Efficiency, Security and Passenger Flow by Enhanced 

Passenger Monitoring (OpTag-FP6-2002-Aero No. 502858). 

5. REFERENCES 

[1] Black, M., Anandan.  P., “The Robust Estimation of Multiple 

Motions: Parametric and Piecewise-Smooth Flow Fields”, 

Computer Vision and Image understanding, vol. 63, no. 1, pp. 

75-104, Jan 1996. 

[2] Kobla, V., Doerman, D., Faloutsos. C., “Compressed 

Domain Video Indexing Techniques using DCT and Motion 

Information in MPEG Video”, In Proc. Of the SPIE, vol. 3022, 

pp. 200-210, 1997. 

[3] Leuven, J., Leeuwen, M.B. F.C.A. Groen., “Real-Time 

Vehicle Tracking in Image Sequences”, In: Proc. IEEE 

Instrumentation and Measurement Conference, Budapest, 

Hungary, May 21-23, 2001, pp.2049-2054 

[4] Memin, E., Perez, P, “Dense estimation and object-based 

segmentation of the optical flow with robust techniques”, IEEE 

Trans. on  Image Processing, Vol. 7, No. 5, pp. 703-719, May 

1998

[5] Yeo, B.L., Liu., B., “On the Extraction of DC sequence from 

MPEG compressed Video”, ICIP’95, pp. 260-263, 1995. 

[6] Segall C.A., Molina R., Katsaggelos A.K., “High-Resolution 

Image from Low-Resolution Compressed Video”, IEEE Signal 

Processing Magazine, pp. 37-48, May 2003. 

[7] Benzougar A., Bouthemy P., Fablet R., “MRF-based moving 

object detection from MPEG coded video”, ICIP’01, pp. 402-

405, 2001. 

[8] Tan Y,-P., Saur D.D., Kulkarni S. R., Ramadge P.J., “Rapid

estimation of camera motion from compressed video with 

application to video annotation”, IEEE Trans. Circuits Syst. 

Video Technol., vol. 10, no. 1, Feb 2000. 

Fig 4 Least Squares blockwise fitting at frames 30 (first column) 

and 45 (second column) 

II - 896

➡ ➠


