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ABSTRACT 

       This paper presents an extension of the solution for 

two-dimensional (2-D) Yule-Walker equations, useful for 

linear prediction (LP) parameter estimation to the three-

dimensional (3-D) case. The resulting fast recursive 3-D 

algorithm has a significant computational advantage over 

direct solution of the 3-D Yule-Walker equations because 

it exploits the triply-Toeplitz structure. 

1. INTRODUCTION 

       There have been previous attempts to extend the two-

dimensional (2-D) estimation approach to the three-

dimensional (3-D) case [5], [6]. This paper presents the 

techniques for estimating 3-D autoregressive (AR) 

parameters from 3-D autocorrelation sequence (ACS) 

values using 3-D Yule-Walker equations with a recursive 

solution operating directly in the 3-D octant-space. This 

computationally simple and fast performing algorithm of a 

close heritage to the original 2-D algorithm, as will be 

shown, by a new approach involving recursive estimation 

of a related set of triply Toeplitz block matrices, from 

which the octant-space AR parameters can be solved. 

2.  THREE-DIMENSIONAL AUTOREGRESSIVE 

PARAMETER MATRICES 

2.1. Three-Dimensional Autoregressive Process 

A 3-D autoregressive sequence 
        

    is generated 

by driving a 3-D linear shift-invariant filter with a 3-D 

white noise sequence               , 

Fig. 1. Typical eight octant-space regions of support 

for 3-D AR parameter arrays 

       Fig.1 illustrates the regions of octant support for eight 

octant-space AR arrays. A 3-D linear prediction estimate 

of the array sample ],,[ nmlx will have the form 

m n l
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in which 
            

is a 3-D linear prediction/AR co-

efficients. If an octant region of support is selected, the   

3-D linear prediction coefficients that minimize the 

variance of the error                              ,   

will yield a linear prediction error that is a 3-D whitening  
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Fig. 2.  2x3x2 AR parameters in the first-octant space 

process if the 3-D LP is of the same 3-D order as the 3-D 

AR process. The region of support for the first-, second-, 

third-, fourth-, fifth-, sixth-, seventh-, and eighth octant-

space AR parameter arrays               (i = 1,2,3,4,5,6,7 and 

8) are defined as, 

2.2. Three-Dimensional Yule-Walker Equations 

      The 3-D Yule-Walker equations for a 3-D AR process 

are obtained by multiplying Eq. (1) by 

and taking the expectation to yield 

            . 

The summation ranges can be selected to be any one of 

the 8 octants of ],,[ nmlai . In anticipation of the fast 

computational algorithm to be presented, we shall assume 

Fig. 3.  Dimension of super block vector 

that subscript p1p2p3 means p1, the point on the ‘l’ axis, 

is a variable order parameter. Then, the p2 point on the 

‘m’ axis and the p3 point on the ‘n’ axis in Fig. 2 are 

assumed to be fixed order parameters. The 3-D Yule-

Walker equations for the support regions can be arranged, 

or ordered, into at least six convenient super block vector 

forms 

by ordering the 3-D AR coefficients. An alternative block 

vector representation of the first octant-space Yule-

Walker equation is 

     The super block vector             has a superscript 1. It 

designates this as a set of the first octant AR parameters. It 

is composed of (p1+1) block vectors, each of dimension  

(p2+1)(p3+1) x 1,

which is defined in terms of the block vectors

which is also defined in terms of the scalar elements

       The super block vector            has p1 numbers of zero 

block vector     and one top super block entry           . The 

block vector            has all zero entries, except for the top 

entry, which is the noise variance      . Note that ‘0’ is  

vector of (p3+1) zeros and 0 is a column block vector of 

(p2+1)(p3+1) zeros.  

which is defined in terms of the block vectors 

which is in turn defined in terms of the scalar elements
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 The data vector is also a super block vector of super 

block dimension (p1+1).     

Super block matrix       has dimension (p1+1)(p2+1) 

(p3+1)x(p1+1)(p2+1)(p3+1). From Eq. (3), we can derive 

         as,                          

Each Super block            is (p2+1)x( p2+1) block Toeplitz 

(each  block element is Toeplitz) and each Toeplitz block 

is (p3+1)x( p3+1) scalar elements. 

Therefore, matrix             is said to be triply Toeplitz or 

super block Toeplitz. A subscript p1p2p3 is used to 

remind the reader that ‘variable order p1’ and ‘fixed order 

p2 and p3’ ordering has been used.  

3. FAST SOLUTION OF 3-D NORMAL 

EQUATIONS 

       If the 3-D autocorrelation sequence is known, then it 

will be could be shown that the first octant-space and 

eighth octant-space parameters satisfy the following 3-D 

Yule-Walker normal equations 

which has the alternative representation 

 It can be shown that            and            are obtained as 

complex conjugates of            and           ,            and                    

           ,and the last set           and          . Autocorrelation 

symmetry properties are  

      Fig. 4 illustrates the two coefficients (i = 1 and 5) 

which have hermitian symmetry property. A fast 

computational algorithm for solution of              is not 

based on direct solution for the 3-D AR parameters, but is 

based on solving a special variant of the 3-D AR 

algorithm involving the solution of the following set of 3-

D normal equation of order p and index k. Based on the 

property                              , we can form  

where 

and the block vectors of block dimension (p2+1)

(p3+1)x(p2+1)(p3+1)  are defined as  

Therefore, we can say that a related block linear 

prediction matrix relationship is  

In which I is a (p2+1)(p3+1) x (p2+1)(p3+1) identity matrix, 

the block linear prediction parameter matrixes 

                   for 1 k p1 and block linear prediction 

covariance matrix             have dimension (p2+1)(p3+1)x

(p2+1)(p3+1).   

       Note that at,                   and                     in Eq. (3), so 

one derives             from      as follows 

and scaled such that                      , as follows 

Similarly  

also scaled such that  
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Fig. 4.  Illustrate of the complex conjugates 

4. RECURSIVE SOLUTION FOR 3-D SUPER  

BLOCK LINEAR PREDICTION PARAMETER 

MATRICES

   Since             is super block Toeplitz (triply Toeplitz), 

we can show that the 3-D autocorrelation matrix is 

hermitian and is centrosymmetric           . Reflection 

matrix   has (p2+1)(p3+1)x(p2+1)(p3+1) dimension. The 

Triply Toeplitz structure of can be exploited to develop 

the 3-D version of the recursive 1-D Levinson algorithm 

that solves Eq. (4). This paper already presented Eq. (4) 

and it may alternatively be expressed as Eq. (5) Using the 

centrosymmetric property and the identity matrix   , we 

can find the 3-D reflection coefficient matrix        , such 

that the following expression is valid 

if we multiply both sides on the right by at order, this 

will yield 

where

 We can use the useful properties               from the 

original Levinson algorithm. Also, Eg. (5) will be 

balanced if we select 

which creates the following order-update recursion 

from (6) and (9), it is possible to derive the following 

recursion of the covariance matrix 

This reduces the computational burden of general three- 

dimensional algorithm. Furthermore, this fast procedure 

permits computation of the AR parameters for all eight 

spaces simultaneously. 

5. CONCLUSION 

       In this work, we have presented an efficient 

implementation of the 3-D Yule-Walker equations. The 

closed-form expression of the inverse matrix enables 

further simplifications of the 3-D coefficients due to the 

highly structured problem formulation. This work has 

shown us the possibility of decreasing the computational 

complexity as compared with the classical approach, 

especially for larger matrix sizes. Furthermore, we can 

develop, in future study, a novel 3-D lattice algorithm to 

estimate the forward prediction matrices based on the 3-D 

Yule-Walker equation that will be useful in producing a 

spectral estimation with high frequency resolution.  
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