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ABSTRACT

The traditional stereo reconstrction techniques based on point
correspondences and the estimation of the cameras from the
fundamental matrix introduce a four-fold ambiguity. More-
over, there is a projective ambiguity inherent in the funda-
mental matrix. We show that a symmetric object can be
modeled even under partial occlusion with a pair of uncal-
ibrated stereo images. This implies that unlike traditional
stereo algorithms, we can extract 3D information from two
arbitrary viewpoints, even when there is no left-to-right point
correspondences. To demonstrate the effectiveness of the
method, we present experimental results on both synthetic
and real images.

1. INTRODUCTION

Three dimensional reconstruction recovers the geometry of
the scene and the camera from multiple perspective views.
Typically traditional methods for construction from two views
[1] consist of three steps: compute the fundamental matrix
from point correspondences, find the camera matrices, and
then for each point correspondence compute the point in
space that projects to these two image points using trian-
gulation. Recently, Rother [2] has presented a new linear
direct reference plane method for reconstructing simultane-
ously 3D features (points, lines and planes) and cameras
from many perspective views by solving a single linear sys-
tem. The method finds the linear projective relationship be-
tween lines or planes and cameras, and thus a minimum
amount of image measurements is sufficient. However, it
assumes that a reference plane is visible in all views, which
might be difficult to obtain in practice. Starck and Hilton [3]
presented a model-based framework for the reconstruction
of shape and appearance (especially people) from multiple
views. The technique generates improved results over many
model-free approaches.
In this paper, we exploit the properties of mirror symme-
try in order to self-calibrate and reconstruct the 3D model
for partially viewed mirror symmetric objects. Symmetry,
which is a property shared by many natural and man-made
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objects, is a rich source of information in images. Meth-
ods that exploit symmetry in order to impose constraints on
the 3D structure of the scene have been occasionally ex-
plored in the past [4, 5]. Francois et al. [6] have presented
a method for reconstructing mirror symmetric scenes from
a single view by synthesizing a second camera based on the
first one. However, they assume that their cameras are po-
sitioned in a restricted mirror symmetric setup. As a result
the calibration is fixed by the restricted geometric config-
uration of the cameras, and hence is assumed known. We
describe a more general framework, where unknown cam-
eras can view a symmetric object from any arbitray position
and orientation.

2. THE MIRROR SYMMETRY CONSTRAINT

Symmetry is a ubiquitous property of many natural and man-
made objects. Symmetric objects impose strong geometric
constraints that can be exploited in recovery of motion and
structure. Symmetry is present in objects in the form of
central symmetry, axial symmetry (surface of revolution),
or the most frequently encountered mirror symmetry, which
we investigate in this paper. Examples, include a face, a
car, a chair, etc. In mirror symmetry, object symmetry is
defined with respect to a plane π in the 3D space, so that for
any point M = [X Y Z 1]T on the object there exist a
point M′ = [X ′ Y ′ Z ′ 1]T on the object such that MM′

is orthogonal to π and d(M, π) = d(M′, π), where d(·, ·)
stands for the Euclidean distance.
Given two pairs of such symmetric points (M1,M′

1) and
(M2M′

2), it can be readily verified that they are coplanar,
e.g. in the plane π′. Suppose now that these four points are
imaged with a perspective camera whose 3 × 4 projection
matrix is given by P. Define the world coordinate frame as
follows: the x-axis along M1M′

1, y-axis along the line of
intersection of π and π′, and z-axis according to the right-
hand rule (see Figure 1). We can then show that in the 3D
space the symmetric pairs of points are related via

M′
i =

(
I4 − 2

vaT

vT a

)
Mi i = 1, 2 (1)

where v = [−1 0 0 0]T , a = [1 0 0 0]T , I4 is a 4 × 4
identity matrix, and T denotes the transpose.
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Fig. 1. Configuration of two pairs of symmetric points.

This equation equally applies to any symmetric pairs of points
on the object. The corresponding image points are given by
mi = PMi and m′

i = PM′
i, with

P = K[r1 r2 r3 t] (2)

where r1, r2, r3 are the columns of the 3 × 3 rotation ma-
trix R, t is the translation vector, and K is the 3 × 3 upper
triangular camera intrinsic matrix. Due to mirror symme-
try, the two pairs of symmetric points are coplanar, and for
our choice of the world coordinate frame thay are in the
plane Z = 0. Therefore, the image coordinates are related
to the world coordinates of the 3D points by a 3 × 3 ho-
mography, i.e. mi = HwM̄i and m′

i = HwM̄′
i, where

M̄i = [Xi Yi 1]T , M̄′
i = [X ′

i Y ′
i 1]T , and

Hw = K[r1 r2 t] (3)

Also, clearly the line a and the point v lie in the plane
Z = 0. It therefore follows from (1) that the images of
the symmetric points are related via

H−1
w m′

i =
(
I3 − 2

v̄āT

v̄T ā

)
H−1

w mi (4)

where ā = [1 0 0]T and v̄ = [−1 0 0]T .
Since a and v are the world y-axis and the vanishing point
along the x-axis, upon rearranging, we get

m′
i = Hw

(
I3 − 2

v̄āT

v̄T ā

)
H−1

w mi (5)

=
(
I3 − 2

vxlT

vT
x l

)
mi (6)

= Hhmi (7)

where vx is the vanishing point along the x-axis, and l is a
line in the image plane corresponding to the projection of
the world y-axis.
This shows that under mirror symmetry, the projections of
symmetric points into the image plane are related via a har-
monic homology Hh [1]. Given the image projection of any
two pairs of symmetric points, this harmonic homology can
be computed. As a result, given the image projection of any

3D point that is coplanar with the original four points, the
projection of its symmetric counterpart can be readily deter-
mined even if it is not visible due to for instance occlusion.
This is the key idea that is exploited herein in order to build
3D Euclidean models of symmetric objects, even when they
are partially visible.
Before showing this, we extend the idea to an even more
general situation that can be encountered in practice. Con-
sider the case, where vx is known, but l is unknown. Clearly,
the homology Hh can not then be computed directly from
this minimal information. It turns out that we still can find
the homology using the mirror symmetry constraint. For
this purpose note that any line through the vanishing point
vx that interects the image of the symmetric object has to be
perpendicular to its plane of symmetry. Let l1 be one such
line, and m �= vx be a point on this line and on the image of
the object. Then it can be shown that the projection of the
world origin into the image plane is given in terms of l by

o = l × (vx × m) (8)

where × denotes the cross product of two vectors.
By exploiting the geometry of the mirror symmetry, we can
verify that the point m′ that is symmetrically situated with
respect to m on the line l1 satisfies the following equality

{vx,o;m,m′} = 1 (9)

where {· , · ; · , ·} is the cross-ratio of four points.
By adopting a sign convention, equation (9) can be used
once with the x-coordinates and once with the y-coordinates.
Upon substituting for m′ and o from (6) and (8) respec-
tively, we get two cubic polynomial equations in terms of
the two unknown parameters of l. The ambiguity in the so-
lution can be resolved by repeating the above steps for a
second line. Once l is known, the homology can be com-
puted as before.

3. STEREO RECONSTRUCTION

Consider the case where we have a stereo pair of a mir-
ror symmetric object. Assume also that some parts of the
object are not visible due to for instance occlusion (includ-
ing self-occlusion), or the object not being centered within
boundaries of the image frames. Based on the results of the
previous section, we can still fully reconstruct the object
from these stereo views, using the symmetric counterparts
of the occluded regions. The only challenge that we face is
that a Euclidean reconstruction would require the world to
image homography Hw to be known. This is equivalent to
saying that we need the camera to self-calibrate using the
given stereo pair.
For this purpose note that for a unit aspect ratio and zero
camera skew, K is of the form

K =

⎡
⎣ f 0 u0

0 f v0

0 0 1

⎤
⎦ (10)
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where f is the camera focal length, and c̃ = [cT 1]T =
[u0 v0 1]T is the principal point.
On the other hand [7, 8]

Hw = [r31ṽx r32ṽy tzo] (11)

where vy is the vanishing point along the y-axis.
Since ṽx and ṽy are the vanishing points along two orthog-
onal directions, we have

ṽT
y ωṽx = 0 (12)

where ṽx = [vx 1]T , ṽy = [vy 1]T , and ω is the image
of the absolute conic (IAC) [1], whose knowledge would
yield the intrinsic calibration parameters using the Cholesky
factorization of its dual.
Now, we know that vy must lie on the image of the world
y-axis, i.e. vT

y l = 0. Therefore

ṽy = [l]×ωṽx (13)

where [·]× is the usual notation for the skew symmetric ma-
trix characterizing the cross product. Geometrically, ωvx is
the vanishing line of the pencil of planes that are parallel to
the plane of symmetry.

Since tz is a global scale factor, we can set it to one for
one of the two images and compute it for the second one by
forcing corresponding image points to be projected to the
same 3D world point. The other two columnwise scale fac-
tors, i.e. r31 and r32 can be found in terms of the camera
intrinsic parameters by using (11), (13) and the orthonor-
mality property of the rotation matrix. As a result the world
to image homography for both images can be expressed as
a function of the intrinsic parameters. Therefore, in order
to solve for the unknown intrinsic parameters, and hence
all related extrinsic parameters, we formulate our problem
in terms of the inter-image homography that minimizes the
symmetric transfer error of geometric distances.

(f, c) = arg min
Γ

∑
i

d(mi,H−1
f,cm

′
i))

2

+ d(m′
i,Hf,cmi)

2 (14)

where Γ is the 3D search space of the solution for f and
(u0, v0), Hf,c = H′

wH−1
w is the inter-image homography

(which is only a function of f and c, and superscripts indi-
cate the images in which the cross-ratios are taken.

In order to minimize this cost function, we take advan-
tage of the fact that the principal points of recent CCD cam-
eras are very close to the center of the image. Therefore,
we first find an initial estimate for f from (14) by setting
c as the center of the image. The search space for the in-
trinsic parameters (f, c) that minimize the cost function in

(14) is then narrowed down to a 3D window around this
initial value of f and the image center. The solution is
therefore found without resorting to non-linear minimiza-
tion techniques, i.e. by sampling the solution space within
the 3D search window, and performing an exhaustive search
within this small window. Once the camera parameters are
found, we can find the two world to image homographies,
from which we can recover the 3D points by optimal trian-
gulation as described in [1]. Again note that 3D reconstruc-
tion can be achieved for regions that are viewed by only one
camera (e.g. due to occlusions or partial view), using the
symmetric part of the object.

4. EXPERIMENTAL RESULTS

The proposed approach has been tested on an extensive set
of simulated and real data. Due to lack of space only some
are presented below.

4.1. Computer Simulation

Points true X Est. X true Y Est. Y true Z Est. Z

1st -85 -82.47 0 0.002 0 -0.127

2nd -125 -121.72 -150 -144.57 0 -0.037

3rd 125 121.44 -150 -144.31 0 -0.455

4th 85 82.13 0 0.133 0 -0.552

5th -85 -83.43 0 0.298 -100 -95.73

6&7th ±125 ±124.37 -100 -96.30 -115.69 -109.70

8th 85 81.98 0 0.577 -100 -95.93

Table 1. Estimated 3D coordinates at 1.5 pixel noise level

Noise Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev.

0.2 1.60 0.78 1.48 1.77 1.80 1.88

0.4 1.44 0.51 1.24 1.40 1.43 1.60

0.6 1.76 0.37 1.37 1.60 1.46 1.76

0.8 2.14 0.66 2.51 2.82 2.86 2.92

1.0 3.30 0.83 2.95 3.48 3.10 3.14

1.2 1.97 0.92 1.94 2.33 2.88 2.55

1.5 2.70 0.65 2.87 2.83 2.58 2.77

Table 2. Performance vs noise (in pixels)

For the synthetic data shown herein the image resolution
was 480 × 320. Eight points with 3D coordinates shown in
Table 1 were reconstructed to recover four planes. Note that
the point pair 6th and 7th in table 1 are not both visible in
the images. The 7th point is not seen in the left image, while
the 6th point can not be seen in the right image. Hence,
they only differ in their x-coordinates by a sign. In the ex-
periments presented herein, Gaussian noise with zero mean
and a standard deviation of σ ∈ [0, 0.5] was added to the
projected image points. For each noise level, we ran our al-
gorithm independently 100 times, and all the results shown
are the averaged ones. The reconstructed 3D points were
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compared with the ground truth. In 1.5 pixel noise level, the
results are shown in Table 1. To evaluate the performance
vs noise, we also measured the absolute errors of X , Y and
Z for every points. Mean and standard deviation of all co-
ordinates are shown in Table 2 with different noise levels.

4.2. Real Data

We experimented with various real objects that contained
mirror symmetry. Experimental results were verified against
ground truth, which indicate an excellent performance for
our approach, with the standard deviation of error in the re-
covered distance ratios under 3.5. Figures 2 and 3 show
some real images of a symmetric objects. Note that some
parts are only visible in one image. However, our technique
accurately recovers all parts as shown in the snapshots of
the reconstructed 3D models shown in in part (c) and (d) of
these figures.

5. CONCLUSION
We have proposed a technique for reconstructing partially
viewed symmetric objects given two views obtained by an
unknown camera from unknown arbitrary positions and ori-
entations. We use the symmetry of the scene to self-calibrate
and recover both visible and occluded parts. The approach
is shown to be very stable and provides excellent results.

(a) (b)

(c) (d)

Fig. 2. (a) & (b) Two real images of a partially viewed sym-
metric object, (c) & (d) snapshots of the reconstructed 3D
model including the occluded left and right portions
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