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ABSTRACT

The process of reconstructing a high-resolution image from
multiple low-resolution images is known as super-resolution re-
construction. One of the assumptions of current super-resolution
reconstruction methods is that all images are captured with the
same exposure time and aperture size. This is not necessarily
true. In reality, cameras have limited dynamic range and nonlin-
ear response to the quantity of light received; and camera settings
might be adjusted automatically or manually to capture the de-
sired portion of the scene’s dynamic range. In this paper, we pro-
pose a super-resolution algorithm based on an imaging model that
includes camera response function, exposure time, sensor noise
and quantization error in addition to spatial blurring and sampling.
The algorithm is based on Bayesian estimation. Initial experiments
demonstrate the effectiveness of the algorithm.

1. INTRODUCTION

With the development of visual communications and image pro-
cessing applications, there is a high demand for high-resolution
images not only to give the viewer a high-quality picture but also
to provide additional detail that may be critical in various appli-
cations. Digital cameras, surveillance systems, medical imaging,
aerial/satellite imaging, and high-definition TV systems are some
of the application areas where high-resolution images are desired.
For example, in medical imaging high-resolution images are re-
quired to make correct diagnosis and operational decisions. Surveil-
lance systems require high-resolution images to recognize faces,
licence plates, etc. In aerial/satellite imaging, high-resolution im-
ages are required to resolve small objects and to make correct de-
tection/classification decisions.

The most direct way of increasing spatial resolution is to in-
crease the number of sensor elements per unit area. Although this
can be achieved by reducing pixel size and placing pixels more
densely, the cost of producing such sensor arrays may not be ap-
propriate for general purpose commercial applications. More im-
portantly, as pixel size decreases, the image quality degrades be-
cause of shot noise. Shot noise is due to the inherent quantum un-
certainty in the electron-hole pair generation process and remains
roughly the same with reduced pixel size, whereas the signal power
decreases proportional to the pixel size reduction.

An alternative approach is to use signal processing techniques
to improve spatial resolution. When there are multiple images of a
scene, it is possible to increase the spatial resolution by exploiting
the correlation among those images. Such a multi-frame resolution
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Fig. 1. The proposed super-resolution algorithm uses an imaging
model that includes dynamic range and spatial domain effects.

enhancement process is referred to as super-resolution reconstruc-
tion in the literature [1, 7, 11, 8, 13].

Although considerable work has been done in the area of super-
resolution reconstruction, an important drawback of these algo-
rithms is the assumption that all images (to be used in reconstruc-
tion) capture the same portion of the dynamic range. In other
words, it is assumed that camera parameters such as exposure time
and aperture size are fixed for all images. In fact, sensors have
limited dynamic range, and the camera parameters need to be ad-
justed to capture the right portion of the scene’s dynamic range.
All modern cameras are equipped with automatic parameter con-
trol units. Therefore, the assumption of fixed camera parameters
fails unless the parameters are fixed manually, which is not de-
sirable in video imagery because of the wide dynamic range and
potential illumination changes. In addition, it is possible to ob-
tain more information about a scene by combining images that are
captured with different camera parameters.

The so-called high-dynamic range imaging has been an ac-
tive research area in the computer vision community. Debevec et
al. [4], Mann [9], Robertson et al. [12], and Candocia [2] have
demonstrated how to improve dynamic range by combining im-
ages captured with different exposure times. However, the issue
of nonlinear sensor response and different exposures has not been
addressed extensively in the super-resolution research. Recently,
we proposed a projections onto convex sets based super-resolution
algorithm that addresses the saturation in pixel measurements and
potential changes in illumination [6]. In this paper, we propose
a stochastic super-resolution reconstruction algorithm that models
nonlinear camera response function, exposure time, sensor noise,
and quantization error in addition to spatial blurring and sampling.
In Section 2, we present the image acquisition model used. In Sec-
tion 3, we provide the derivation and the details of the proposed
algorithm. Preliminary experimental results are given in Section
4.
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2. IMAGING MODEL

Incorporating the relative motion among observed images, super-
resolution algorithms model the imaging process as a linear map-
ping between a high-resolution input signal q and low-resolution
observations zi. (i = 1, ..., N ; N is the total number of observa-
tions.) The imaging process is formulated as

zi = Hiq, i = 1, ..., N, (1)

where Hi is the linear mapping that includes motion (of the cam-
era or the objects in the scene), blur (caused by the point spread
function of the sensor elements and the optical system), and down-
sampling. Therefore, super-resolution reconstruction is an inverse
problem where q is estimated from a set of observations zi. Hi

can be space- and time-varying. In practice, Hi is implemented in
three steps: spatial warping to compensate for motion, convolution
with a point spread function (PSF), and downsampling. Details of
Hi modeling can be found in the special issue of the IEEE Signal
Processing Magazine [1] and the references therein.

As mentioned earlier, the model in equation (1) is not a com-
plete model. An imaging sensor has a nonlinear response to the
quantity of light it receives, and only a portion of the scene’s dy-
namic range is captured. Exposure time may not be identical for
all images. In addition to the exposure time, we also need to con-
sider sensor noise and quantization error in the imaging process.
Denoting vi as the additive noise term (due to shot noise and ther-
mal noise) and wi as the quantization error, the imaging process
can be formulated as

zi = f (tiHiq + vi) + wi, i = 1, ..., N, (2)

where f(·) is the nonlinear camera response function function, ti

is the exposure time, and Hi is the linear mapping that incorpo-
rates motion, PSF, and downsampling. (See the block diagram in
Figure 1.)

3. RECONSTRUCTION ALGORITHM

3.1. Stochastic Estimation

In this section, we derive a maximum-likelihood estimator for q.
Defining g(·) ≡ f−1(·) and using a Taylor series expansion, equa-
tion (2) can be written as

g (zi) � tiHiq + vi + g′ (zi)wi. (3)

We model vi and wi as zero mean independent identically dis-
tributed (IID) Gaussian noises with variances σ2

v and σ2
w, respec-

tively. This will result in an analytically trackable derivation. It
can be shown that the total noise, vi + g′ (zi)wi, is also a zero
mean Gaussian noise with variance

σ2 = σ2
v + g′ (zi)

2 σ2
w. (4)

A critical implication of this result is that the total noise variance
σ2 is a function of the camera response function and measured
pixel intensities zi. Equation (4) indicates that the total noise vari-
ance is larger for saturated pixel values. This will become more
clear when we show a typical camera response function shortly.

Denoting K as the covariance matrix of the total noise, the
maximum-likelihood estimate of q minimizes the following cost
function:

E (q) =
∑

i

(
g (zi)

ti
− Hiq

)T

K−1

(
g (zi)

ti
− Hiq

)
. (5)

Fig. 2. Images of the same scene captured with a Canon G5 digital
camera. The exposure times are 1/25, 1/50, 1/100, 1/200, 1/400,
1/800, and 1/1250 seconds. Original image size is 480 × 640.

Because of the IID noise assumption, K is a diagonal matrix, and
its diagonal is equal to σ2.

One technique to obtain the maximum-likelihood estimate in
equation (5) is the steepest descent technique. q can be estimated
by iteratively updating an initial estimate in the direction of the
negative gradient of E(q). At the kth iteration, the estimate is

q(k) = q(k−1) − α∇E(q(k−1)), (6)

where α is the step size, and ∇E(q) can be found as

∇E (q) = −
∑

i

1

ti
HT

i K−1 (g (zi) − tiHiq). (7)

The step size α in equation (6) can be fixed or updated adap-
tively during the iterations. Hessian of E(q) can be used for
changing α.

As a final note, the maximum-likelihood estimation derived so
far can be easily extended to maximum a posteriori estimation by
assuming a Gaussian model (or another appropriate model) for the
prior distribution of q.

3.2. Complete Algorithm

In the reconstruction, everything but q is either known or esti-
mated/set in advance. The linear mapping Hi requires subpixel-
accurate spatial registration parameters, point spread function, and
downsampling factor. Typically, the registration parameters are
estimated; while the point spread function and the downsampling
factor are decided in advance. Camera response function and rel-
ative exposure times can be estimated using multiple differently
exposed images [4, 12, 9, 10, 15, 5].

The algorithm starts with an initial estimate q(0), which can be
obtained by (i) interpolating of one of the observations bilinearly,
(ii) applying g(·), and (iii) dividing by the corresponding exposure
time. This reference image is then updated iteratively as in equa-
tion (6). Each iteration requires simple image operations, such as
warping, convolution, sampling, and scaling:

II - 866

➡ ➡



• Application of Hi involves warping q(k) to the ith frame,
convolving with the point spread function, and then down-
sampling.

• Camera response function is estimated in advance; there-
fore, calculation of g(zi) is simply a look-up-table opera-
tion.

• Because K−1 is diagonal, its application is division of each
pixel value by the corresponding σ2.

• HT
i is implemented by upsampling the image (with zero

padding), convolving with the flipped point spread function,
and motion warping back to the reference frame [7].

4. EXPERIMENTAL RESULTS

4.1. Data Set

In this paper, we simulated relative motion and sampling by shift-
ing and downsampling the images in Figure 2 by four. Four slightly
shifted images of size 120 × 160 are picked from each differently
exposed image. That is, a total of 28 images are obtained and used
for restoration. Also note that none of the shifts are same among
all these 28 images.

4.2. Estimating the Registration Parameters

One critical issue in super-resolution reconstruction is to find the
spatial registration parameters. The problem becomes more com-
plicated when the images are captured with different exposure times.
We estimate registration parameters based on mutual information.
Mutual information has been successfully used for intermodal reg-
istration [16, 3, 14]. Our experiments show that it is also effective
for registering differently exposed images.

For convenience, we briefly repeat the idea of using mutual
information in registration. Let x = (l1, l2)

T be the column vec-
tor containing pixel coordinates and W(x; µ) be a parameterized
warp, where µ is a vector of parameters. W(x; µ) can represent
affine, perspective, or any other parametric transformation. We
would like to find the parameters µ that maximizes the mutual
information between two images zi (W(x, µ)) and zj (x). Let
p (Ii, Ij ; µ) be the joint histogram of zi (W(x, µ)) and zj (x),
where Ii and Ij are pixel intensities in the ith and jth images,
respectively. Ii ∈ [0, 255] and Ij ∈ [0, 255]. The marginal his-
tograms for ith and jth images are

pi (Ii; µ) =
∑
Ij

p (Ii, Ij ; µ) and pj (Ij ; µ) =
∑
Ii

p (Ii, Ij ; µ).

(8)
Then the mutual information is

M (µ) =
∑
Ii

∑
Ij

p (Ii, Ij ; µ) log2

(
p (Ii, Ij ; µ)

pi (Ii; µ) pj (Ij ; µ)

)
.

(9)
In our experiments, we did exhaustive search in the µ space

to find the parameters that maximizes the mutual information. To
obtain subpixel accurate parameters, we interpolated images using
bicubic interpolation before the search. The interpolation factor
was set to eight to obtain 1/8 pixel accuracy.

Fig. 3. Estimated camera response function is shown in logarith-
mic scale.

4.3. Estimating the Camera Response Function

There are various methods available in the literature to estimate
camera response function [4, 12, 9, 10, 15, 5]. In our experiments,
we use the comparagram method in [10]. Two differently exposed
images were used to estimate the camera response function. The
camera response function can be determined up to a scale factor;
therefore, f(255) is set to one. To obtain a smooth function, a reg-
ularization filter of [1,−2, 1] is used. Estimated camera response
function is shown in Figure 3. This response function is used for
the rest of the experiments. When exposure times are not known,
sensor response function and exposure times could be estimated it-
eratively [10]. In our experiments, the exposure times were known
from the camera settings; therefore, iterative estimation was not
necessary.

4.4. Reconstruction

In Figure 3 (linear scale), the pixel measurements that are close to
255 correspond to the saturated part of the camera response func-
tion. Therefore, the noise variance is larger for those values. After
finding g′(·) numerically (first order difference), we obtain the in-
verse covariance matrix K−1 as a function of pixel values. (The
specific choices of σ2

v and σ2
w are 0.001 and 1, respectively. K−1

is scaled such that its maximum value is one.) The initial estimate
is obtained by bilinearly upsampling one of the 1/1250 second im-
ages by three, and applying g(·). This initial estimate is updated
iteratively using equation (6). The step size α is set to 0.4; and
the number of iterations is set to 15. The point spread function is
chosen to be a 9 × 9 Gaussian window with standard deviation of
1.5.

4.5. Results

Figures 4 and 5 show two regions from bilinearly interpolated in-
put images (one from each exposure time) and the restored im-
age. These regions are selected from inside and outside the scene.
Comparison of input data and reconstructed image demonstrates
spatial resolution and dynamic range enhancement. The advan-
tage of the stochastic approach is that noise statistics are included
in the formulation in an explicit way. Prior image models can also
be included easily in the stochastic approach.
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Fig. 4. First seven images are seven of the bilinearly interpolated
observations. Last image is the restored image.

5. CONCLUSIONS

We proposed a super-resolution algorithm that can handle changes
in exposure time, and demonstrated the idea with a set of images.
Unlike the previous super-resolution algorithms, the proposed al-
gorithm uses an imaging model that includes nonlinear camera re-
sponse function. The preliminary results are promising. Some
of the parameters used in the reconstruction were chosen heuris-
tically. As a future work, we will investigate estimating optimal
parameters and we will include prior models in the reconstruction.
We also plan to test and compare the algorithms with various other
data sets.
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