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ABSTRACT

We consider the general framework of planar ob-
ject recognition based on a set of known templates.
While the set of templates is known, the tremen-
dous set of possible affine transformations that may

relate the template and the observed signature, makes

any detection and recognition problem ill-defined
unless this variability is taken into account. Given
an observation on one of the known ob jects, sub ject
to an unknown affine transformation of it, our goal
is to estimate the deformation that transforms some
pre-chosen representation of this object (template)
into the current observation. The direct approach
for estimating the transformation is to apply each of
the deformations in the affine group to the template
in search for the deformed template that matches
the observation. We propose a method that em-
ploys a set of non-linear operators to replace this
high dimensional problem by an equivalent linear prob-
lem, expressed in terms of the unknown affine trans-
formation parameters. This solution is further ex-
tended to include the case where the deformation
relating the observed signature of the object and
the template is composed both of the geometric de-
formation due to the affine transformation of the co-
ordinate system and a constant illumination change.
The proposed solution is unique and exact and is ap-
plicable to any affine transformation regardless of the
magnitude of the deformation.

1. INTRODUCTION

This paper is concerned with the general problem of ob-
ject recognition and registration based on a set of known
templates. However, while the set of templates is known,
the variability associated with the object, such as its lo-
cation and pose in the observed scene, or its deformation
are unknown a-priori, and only the group of actions caus-
ing this variablity in the observation, can be defined. This
huge variability in the object signature (for any single ob-
ject) due to the tremendous set of possible deformations
that may relate the template and the observed signature,
makes any detection and recognition problem ill-defined un-
less this variablity is taken into account. In other words,
implicit or explicit registration of the observed object sig-
nature with respect to any template in an indexed set is an
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inherent and essential part of the solution to any detection
and recognition problem.

To enable a rigorous treatment of the problem we begin
by defining the “similarity criterion”. Let G be a group
and S be a set (a function space in our case), such that G
acts as a transformation group on S. The action of G on
S is defined by G x S — S such that for every ¢ € G and
every s € S, (¢,8) — s o ¢ (composition of functions on
the right), where so ¢ € S. From this point of view, given
two functions h and g on the same orbit, the initial task
(that enables recognition in a second stage), is to find the
element ¢ in G that makes h and g identical in the sense
that h = g o ¢.

In this paper we concentrate on parametric modeling
and estimation of affine transformations, which is a special
case of the general problem of modeling the homeomor-
phism group. Theoretically, in the absence of noise, the
solution to the recognition problem is obtained by applying
each of the deformations in the group to the template, fol-
lowed by comparing the result to the observed realization.
In the absence of noise, application of one of the defor-
mations to the template yields an image, identical to the
observation. Thus the procedure of searching for the defor-
mation that transforms ¢ into h is achieved, in principle, by
a mapping from the group (the affine group, in our case) to
the space of functions defined by the orbit of g. However, as
the number of such possible deformations is infinite, this di-
rect approach is computationally prohibitive. Hence, more
sophisticated methods are essential.

2. ESTIMATION OF MULTIDIMENSIONAL
AFFINE TRANSFORMATIONS: PROBLEM
DEFINITION

The basic problem addressed in this paper is the following;:
Given two bounded, Lebesgue measurable functions h, g
with compact supports, and with no affine symmetry, as
rigorously defined below, such that h : R — R,g: R* — R
where

h(x) =g(Ax+c), AeGL,(R), x,ce R" (1)

find the matrix A and the translation vector c.

Let M(R™, R) denote the space of compact support,
bounded, and Lebesgue measurable functions from R" to R.
Let N C M(R"™, R) denote the set of measurable functions
with an affine symmetry (or affine invariance), i.e., N =
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{f € M(R",R)|3A € GLn(R),c € R, (A,c) # (L,0)
such thatf(x) = f(Ax + c) for every x € R"}. Let

Mass(R™, R) = M(R",R) \ N denote the set of compact
support and bounded Lebesgue measurable functions with
no affine symmetry.

In the following sections we show that the problem of
finding the parameters of the unknown affine transforma-
tion, whose direct solution requires a highly complex search
in a function space, can be formulated as a parameter es-
timation problem. Moreover, it is shown that the original
problem can be formulated in terms of an equivalent prob-
lem which is expressed in the form of a linear system of
equations in the unknown parameters of the affine trans-
formation. A solution of this linear system of equations
provides the unknown transformation parameters.

3. AN ALGORITHMIC SOLUTION

In this section we provide a constructive proof showing that
given an observation on h(x) € Masr(R", R) and an obser-
vation on g(x) € Mass(R"™, R) where h(x) = g(Ax+c), A
and c can be uniquely determined. Moreover, it is shown
that almost always the solution for the unknown parame-
ters of the affine transformation is obtained by solving only
a linear system of equations.

Let, X,y € R", i.e., x = [x1, Z2,...,Tn]",
vy =[y1,¥2,...,ya]T . Thus,
y=Ax +c,x=A"'y+b (2)

where

ail v Qin Qi1 qin
A= A7 =

ni - Gnn i Gnn
while ¢ and b = —A !¢ are n-dimensional vectors of un-

known constants, each representing the translation along
a different axis, in the coordinate transformation model
and its inverse, respectively. More specifically let b =

[9105 G20, - - -, qno]”. Defineyo = Landlet § = [yo, y1,...,ya]".
Hence, using (2)
x =Ty (3)
where T is an n X (n + 1) matrix given by
quo qu1  Qin
T=1 : oo
dqno Qdn1 "  (gnn

Since A € GLn(R), also A™" € GL,(R). Tt is therefore
possible to solve for A~! and the solution for A is guar-
anteed to be in GL,(R). Moreover, as shown below, in
the proposed procedure the transformation determinant is
evaluated first, and by a different procedure than the one
employed to estimate the elements of A~!. Hence, a non-
zero Jacobian guarantees the existence of an inverse to the
transformation matrix.

Let f € Mass(R™, R) and let p,, denote the Lebesgue
measure on R"™. Define the notation

Rn Rn

Note that in the following derivation it is assumed that
the functions are bounded and have compact support, as
they are measurable but not necessarily continuous. It is
further assumed that A € GL,(R) has a positive determi-
nant.

The first step in the solution is to find the Jacobian of
the linear transformation A. Assume that ¢ = 0. A simple
approach is to evaluate the Jacobian through the identity

relation:
[re= [#aa-1a7] [é0) @

Rn Rn" Rn

or through similar identities. Hence,

J ()
A~ = B (5)
[~ [ 9*()
R™
and |A_1| = |A|™'. The Jacobian of the transformation

(3) is the same as in the case where there is no translation.

In the second stage we prove that, provided that ¢ is
“rich” enough in a sense we rigorously define below, T can
be uniquely estimated by establishing an n + 1 dimensional
system of linear equations. More specifically, let (T)x de-
note the kth row of T. Applying a family of Lebesgue
measurable, left-hand compositions {w¢} : R — R to the
known relation h(x) = g(Ax+c) and integrating over both
sides of the equality, we obtain

/ rwe o h(x)

= |A71|/(Tk5’)wz°y(5’)

RTL Rn
n
N / Gweog(3) (6)
=0 R™
Let
G =
J wiog(y) [ yawi o g(y) J ynwi o g(y)
RTI R’ﬂ RTL
J wnir09(y) [ nrwniiog(y) J vnwni10g(y)
R™ Rn Rn

Rewriting (6) in a matrix form, since g(y) = g(¥),

qko |A| ‘{; Ik(lU] Oh(x))
ol |- | ™)
q;;n ‘A‘sz mk(wn_H Oh(X))

Similar system of equations is solved for each k to obtain
all the elements of T. Hence we have the following:

Theorem 1 Let A € GL,(R). Assumeh,g € Mass(R", R)
such that h(x) = g(Ax +c). Given measurements of h and

g, then A and c can be uniquely determined if there exists

a set of Lebesgue measurable functions {wg}?;l such that

the matrizx G defined above, is full rank.
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Remark: Note that the denominator of (5), as well as
the elements of the matrix G depend only on the template
and its coordinate system and thus have to be evaluated
only once. Therefore, the denominator of (5) together with
the matrix G represent all the information in the template,
required for finding the affine transformation parameters
including the translation. Hence, the denominator of (5)
together with the matrix G form a sufficient represen-
tation of the template (similarly to the notion of sufficient
statistics), so that the template itself is not needed for solv-
ing the estimation problem once G and the denominator of
(5) have been evaluated.

Remark: It should be noted that although we use the
term “estimation” throughout this paper, the solution in
(7) for the affine transformation parameters is ezact and is
not an estimate in the usual sense of the word.

Remark: The application of the set {w;} to g(y) yield-
ing G is in fact a mapping from the space of compact sup-
port, bounded and measurable functions to the space of
(n+1) x (n+1) matrices. Recall that any (n+1) % (n+1)
matrix can be considered as a vector in R"D”. As the set
of singular (n + 1) x (n + 1) matrices is of measure zero in

R’ (see e.g., [2]) it can be shown that unless g itself
is linearly non-informative, i.e., the first order moments of
wp o g vanish for any wp, there will always (in the almost
sure sense) exist a set {w¢};" generating a non-singular
matrix G, and hence a solution for the elements of T. In
other words, for any g, which is “rich” enough there will al-
ways exist a set {wg}Zill generating a non-singular matrix.

Remark: Note that the solution for T employs only
zero (the Jacobian) and first order constraints (obtained by
multiplying w¢oh by xj) and avoids the use of higher order
moments. However, imposing such a restriction (which is
clearly convienient due to its simplicity) may result in cases
where a system of the type (7) does not exist, see [2]. It
is then obvious that higher order moments are needed to
obtain a system similar to (7) (yet nonlinear) with enough
equations to solve for all the unknowns.

4. FINDING THE AFFINE
TRANSFORMATION SUBJECT TO A
SPATIALLY CONSTANT ILLUMINATION
CHANGE

In the analysis carried out so far it has been assumed that
there is no illumination variation between the template and
the observation, and hence the observed deformation is only
due to the geometric distortion of the coordinate system
caused by the affine transformation. In this section we gen-
eralize the proposed solution and address the more general
deformation model where the model given by (1) is replaced
by

h(x) = ag(Ax+c), A€ GLn(R), x,c€R", a€ R, a>0
(8)
where a, A and c are unknown and need to be determined.
As we prove in this section, the problem of finding the con-
stant illumination gain amounts to replacing the step in
which the Jacobian of the transformation is being deter-
mined in the case where there is no illumination change be-
tween the observation and the template, by a step in which

both the illumination change and the Jacobian are jointly
determined. More specifically, since h(x) = ag(Ax+c), we
have

/%%m:a{/mfw%w:w%A*Q/fw> (9)

Rn R™ R™

/mwzfmﬂ/fw> (10)

R™

Similarly,

Hence,
J h(x)

—1,.2 _ R™
|A™ T (11)

R™

-1 4 R[l K6
|A™ ™ = —f 70 (12)

R™

and

Thus, both the Jacobian, |[A™'|, and the illumination gain,
a, can be evaluated using (11)-(12). In the second stage
n 4+ 1 linear and independent constraints of the type (6)
on the elements of T must be set. Applying the family of
Lebesgue measurable, left-hand compositions {w.} : R — R
to the known relation 2h(x) = g(Ax + c) and integrating
over both sides of the equality, similarly to (6) we obtain

" = a7 [ o9

Rn Rn

|A_1| Z Qki /
1=0 R

n

zrwe o (

giwe 0 g(¥)

(13)
and in a matrix form, since g(y) = g(¥),

|A| f mk(wlo@)

qko
gk R
G . = ; (14)
. h(x
Qkn lAlan Tk (wnp1 0 Aa_l)

Thus, once the illumination gain and the Jacobian have
been evaluated, the R.H.S. of (14) is known, and the solu-
tion for the elements of the kth row of T is obtained. Hence
we have,

Theorem 2 Let A € GL,(R). Assumeh,g € Mass(R", R)
such that h(x) = ag(Ax+c), and a is an unknown real gain
coefficient. Given measurements of h and g, then A, c and
a can be uniquely determined if there exists a set of Lebesgue
measurable functions {w}} ] such that the matriz G is full
rank.

Remark: Similarly to the previous cases, where illu-
mination is assumed fixed, the denominators of (11) and
(12), as well as the elements of the matrix G depend only
on the template and its coordinate system and thus have

II - 863



to be evaluated only once. Therefore, the denominators of
(11), (12) together with the matrix G represent all the in-
formation in the template, required for finding the affine
transformation parameters including the translation, in the
case where the illumination gain is unknown. Hence, the
denominators of (11) and (12) together with the matrix G
form a sufficient representation of the template.

5. NUMERICAL EXAMPLE

The example illustrates the operation of the proposed algo-
rithm on a car image. The template image dimensions are
3100 x 1200. It is shown in the bottom image of Figure 1.
The observed deformed image is shown in the upper image
of the figure. This image is an affine transformed version of
the template and is also observed with lower illumination,
such that the illumination gain is a = 0.58. The error in
estimating the gain is @ — a = 0.726 - 10~". The image co-
ordinate system is [—1,1] x [—1,1]. The translation vector
is [-0.4, —0.5] and the translation estimation error vector
is [1.85-1072,3.92-1077]. The deforming transformation is
given by

A— 0.4854  0.3527
| —0.3527 0.4854

where the estimate obtained by the proposed procedure is

A— 0.4722  0.3626
~ | —0.353 0.4858

Finally, the estimated deformation is applied to the original
template in order to obtain an estimate of the deformed
object (middle image in Figure 1) which can be compared
with the deformed observation shown in the upper image.

6. CONCLUSIONS

We have considered the problem of finding the affine trans-
formation relating a given observation on a planar object
with some pre-chosen template of this object. The direct
approach for estimating the transformation is to apply each
of the deformations in the affine group to the template in
a search for the deformed template that matches the obser-
vation. We propose a method that employs a set of non-
linear operators to replace this high dimensional problem
by an equivalent linear problem, expressed in terms of the
unknown affine transformation parameters. The proposed
solution is unique and exact and is applicable to any affine
transformation regardless of the magnitude of the deforma-
tion.
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Figure 1: From bottom to top: Template; Es-
timated deformed object obtained by applying
the deformation estimated from the observa-
tion to the template; Observation on the de-
formed object.
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