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ABSTRACT

We present a novel adaptive super-resolution of videos
based on an embedded constraint version of Adaptive pro-
jected subgradient method [Yamada & Ogura 2004]. The
super-resolution image recovery problem is formulated as
an estimation of linear time-varying systems, which is a
modified version of [Elad & Feuer 1999]. Our method ef-
ficiently improves accuracy of estimation by simple itera-
tive operations which can be processed on parallel systems.
Robustness to additive noise as well as inaccurate estima-
tion of degradation parameters, is realized by incorporating
stochastic information of the noise.

1. INTRODUCTION

Super-resolution recovers a high-resolution image from sev-
eral degraded low-resolution images which potentially have
overlap. Super-resolution system has been demanded in var-
ious areas from medical/satellite imaging [1, 2] to HDTV [3,
4]. Elad and Feuer formulated a super-resolution of videos
as an adaptive system identification problem [5]. They ap-
plied LMS and simplified RLS to the problem.

Adaptive projected subgradient method developed [6]
recently as a time-varying generalization of set-theoretic
signal recovery schemes [3, 7, 8]. This method includes
NLMS, APA and Adaptive parallel subgradient projection
algorithm [9] as special examples and free from instabil-
ity caused by model mismatch unlike RLS. The NLMS,
known as a variation of LMS, exhibits potentially faster
convergence than LMS [10, P.437]. In the application to
super-resolution problem, however, the speed of NLMS is
obviously not sufficient. The adaptive filtering for super-
resolution problem must process huge data, hence it must
utilize multiple data efficiently as well as be realized with
low computational complexity.

In this paper, we propose adaptive super-resolution
based on an embedded constraint version of Adaptive pro-
jected subgradient method [6]. This scheme can use multi-
ple data in parallel way. Moreover, by incorporating noise
information set-theoretically, the speed of convergence as
well as robustness to noise of the adaptive filtering can be
greatly improved.

Specially for application to the adaptive super-
resolution problem, we first define a model of relation be-
tween successive high-resolution images. This model gives
more detailed information on noise. Secondly, stochastic
property set, a set includes the original image in high proba-
bility, is defined by using statistical information of the noise.
To avoid undesirable estimation, additional constraints are
introduced, some of which restrict abrupt intensity change
between frames. Finally we present the proposed schemes
for super-resolution problem. Numerical example shows
excellent performance of the proposed method.

2. PRELIMINARIES

Let R and Z be the set of all real numbers and integers,
respectively. For all vectors u := (u1, . . . , uP), v :=
(v1, . . . , vP) in a P dimensional Euclidean space R

P , its
inner product and induced norm are defined by 〈u,v〉 :=∑P

k=1 ukvk and ‖u‖ :=
√〈u, u〉. A set C ⊂ R

P is convex
provided that ∀u, v ∈ C, ∀ν ∈ (0, 1), νu + (1 − ν)v ∈ C.
Given a nonempty closed convex set C ⊂ R

P , a convex
projection PC : R

P → C maps u ∈ R
P to the unique vec-

tor PC(u) ∈ C such that d(u, C) := minv∈C ‖u − v‖ =
‖u − PC(u)‖. For u := (u1, . . . , uP) ∈ R

P , its m th
component um is equivalently denoted by u(m). Let M,N
and L be positive integers. Suppose that we have sequences
(xk)k∈Z ⊂ R

L2MN and (yk)k∈Z ⊂ R
MN derived through

lexicographically reordering of pixels of LM × LN high-
resolution images and related M × N low-resolution im-
ages, respectively. Each low-resolution image is assumed
to be generated by

yk = DHkxk + nk (k ∈ Z), (1)

where Hk ∈ R
L2MN×L2MN denotes a degradation such as

blur, D ∈ R
MN×L2MN changes resolution by averaging

each L × L region, and nk ∈ R
L2MN denotes additive

noise.
In this paper, we assume that xk and x�(k, � ∈ Z) are

related by

x� = A(�,k)xk + c(�,k) + e(�,k) (2)
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where A(�,k) ∈ R
L2MN×L2MN represents the geometric

warp, c(�,k) ∈ R
L2MN stands for pixels of x� having no

relation to xk, and e(�,k) is an error due to inaccurate regis-
tration. In digital imaging systems, CCDs are used for con-
verting observed images to digital signals. Since noise on
CCD is often assumed to be Gaussian [11], we will assume
nk is Gaussian with zero mean and the variance is assumed
to be known through testing the camera systems in advance.
Moreover, e(�,k) can be approximated by Gaussian noise
[12]. Then, by combining (1) and (2), we obtain

d(�,k) = B(�,k)xk + n(�,k) (3)

where

d(�,k) := y� − DH�c(�,k),

B(�,k) := DH�A(�,k)

and a Gaussian noise

n(�,k) := DH�e(�,k) + nk.

We need further assumption that the covariance
E[n(�,k)(m)n(�′,k)(m′)](�, �′ ∈ Z, m, m′ ∈
{1, . . . , MN}) are derived by using a priori informa-
tion of camera systems and estimated registration error.
Eq.(3) can be equivalently expressed by

d(�,k)(m) = B(�,k)(m)xk + n(�,k)(m)
(m ∈ {1, . . . , MN}), (4)

where B(�,k)(m) is mth row vector of B(�,k). In addition,
some natural and simple requirements would improve the
result. For example, additive noise being zero mean, the
effect can be simply reduced by averaging over the image.
Namely, we have

1
MN

MN∑
m=1

yk(m) =
1

L2MN

L2MN∑
m=1

xk(m). (5)

The above constraint would suppress undesirable deviation
of intensities between frames. Moreover, each component
of x must be nonnegative and would be bounded

x ∈ [BL,BU ]L
2MN (6)

where 0 ≤ BL < BU < ∞ are lower and upper bounds
of intensity. Then our super-resolution problem is nothing
but the following system identification problem of a slowly
time-varying system with unknown impulse response.

Problem 1 For each k ∈ Z, estimate an im-
pulse response xk of a slowly time-varying sys-
tem, subject to (5) and (6), by using its observ-
able inputs (B(�,k)(m))� ∈ {k, . . . , k − K + 1}

m ∈ {1, . . . , MN}
, outputs

(d(�,k)(m))� ∈ {k, . . . , k − K + 1}
m ∈ {1, . . . , MN}

and the covariance of

noise n(�,k), where K is the number of low-resolution
images used for recovery.

Remark 1 Eq.(4) is similar to an equation that Elad and
Feuer employed for their super-resolution. In their paper,
c(�,k) + e(�,k) in (2) is regarded as a noise all together. We
modified it to (2) so that the variance of n(�,k) is reduced.

3. PROPOSED ADAPTIVE SUPER-RESOLUTION
WITH NOISE INFORMATION

For every pair of index sets I(p) := {i(p)
1 , · · · , i

(p)
q } ⊂

{k, k − 1, . . . , k − K + 1}, J(p) := {j(p)
1 , · · · , j

(p)
q } ⊂

{1, . . . , MN}, by stacking q(≥ 1) equations of (4), we have

ν(k,p) :=

⎡
⎢⎢⎣

n
(i

(p)
1 ,k)

(j(p)
1 )

...
n

(i
(p)
q ,k)

(j(p)
q )

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

B
(i

(p)
1 ,k)

(j(p)
1 )

...
B

(i
(p)
q ,k)

(j(p)
q )

⎤
⎥⎥⎦xk −

⎡
⎢⎢⎣

d
(i

(p)
1 ,k)

(j(p)
1 )

...
d

(i
(p)
q ,k)

(j(p)
q )

⎤
⎥⎥⎦

=: U(k,p)xk − v(k,p)

and Q(k,p) := E
[
ν(k,p)ν

T
(k,p))

]− 1
2
. Then Q(k,p)ν(k,p) is an

i.i.d. process. Note that Q(k,p) is given a priori because of
the assumption on covariance. We define a closed convex
set C(k,p), called stochastic property set, which contains xk

with high probability, by

C(k,p) :=
{

x ∈ R
L2MN

∣∣
‖Q(k,p)(U(k,p)x − v(k,p))‖2 ≤ ρ(k,p)

}
(p ∈ Z) (7)

where ρ(k,p) ≥ 0(See Eq.(11) of [9] for detail). The
threshold ρ(k,p) controls tradeoff between the probability
and tightness of C(k,p). Some examples of ρ(k,p) are given
in [9]. Moreover, noise averaging constraint in (5) and
bounded intensity constraint in (6) respectively define con-
straint sets

VNA := {x ∈ R
L2MN |x satisfies (5)}

CBI := [BL,BU ]L
2MN .

Our basic idea is this: since the original image would be
included in each C(k,p), VNA, and CBI, we can approach to
a solution of Problem 1 by iteratively computing the convex
projections onto them.

Since VNA is a hyperplane and CBI is a hypercubic, con-
vex projections onto them are easy to compute. Unfortu-
nately, the convex projection onto C(k,p) is hard to compute.
Thus we employ the next closed halfspace to approximate
to C(k,p)

H−
(k,p)(x

(n)
k ) :=

{
x ∈ R

L2MN
∣∣

(x − x
(n)
k )T∇f(k,p)(x

(n)
k ) + f(k,p)(x

(n)
k ) ≤ 0

}
,
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where

f(k,p)(x) := ‖Q(k,p)(U(k,p)xk − v(k,p))‖2 − ρ(k,p)

∇f(k,p)(x) = 2(Q(k,p)U(k,p))T Q(k,p)(U(k,p)xk − v(k,p)).

This halfspace is called an outer approximation of C(k,p).
Then the convex projection onto C(k,p) is efficiently approx-

imated by the convex projection onto H−
(k,p)(x

(n)
k ), which

is nothing but an orthogonal projection onto a boundary of
the above outer approximation

P
H−

(k,p)(x
(n)
k )

(x(n)
k ) :=⎧⎨

⎩
x

(n)
k if f(k,p)(x

(n)
k ) ≤ 0

x
(n)
k − f(k,p)(x(n)

k )

‖∇f(k,p)(x(n)
k )‖2

∇f(k,p)(x
(n)
k ) otherwise

when x
(n)
k /∈ C(k,p). Finally the next iterative method,

based on an embedded constraint version of Adaptive pro-
jected subgradient method (See [6, Example 5]), resolves
Problem 1 with small computational load for each steps and
robustness to noise.

Algorithm 1 For each k ∈ Z, let

x
(0)
k := PVNA(A(k,k−1)x̂k−1 + ĉ(k,k−1))

where x̂k−1 and ĉ(k,k−1) are estimates of xk−1 and

c(k,k−1), respectively . Generate a sequence (x(n)
k )n≥0 ⊂

R
L2MN by the following equation

x
(n+1)
k :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x
(n)
k if Θ′

n

(
x

(n)
k

)
∈ M⊥

k

x
(n)
k − λn

Θn

(
x

(n)
k

)
∥∥∥PMk

(
Θ′

n

(
x

(n)
k

))∥∥∥2

×PMk

(
Θ′

n

(
x

(n)
k

))
otherwise,

where λn ∈ [0, 2], a linear subspace parallel to VNA

Mk :=

⎧⎨
⎩x ∈ R

L2MN

∣∣∣∣∣∣
L2MN∑
m=1

x(m) = 0

⎫⎬
⎭ ,

and

Θn (x) :=
J−1∑
t=0

wtd
(
x,H−

(k,p)(x
(n)
k )

)

+wJd (x, CBI)

Θ′
n (x) :=

J−1∑
t=0

wt

x − P
H−

(k,p)(x
(n)
k )

(x)∥∥∥∥x − P
H−

(k,p)(x
(n)
k )

(x)
∥∥∥∥

+wJ
x − PCBI (x)
‖x − PCBI (x)‖

with (wt)J
t=0 such that wt ≥ 0 and

∑J
t=0 wt = 1.

Note : 1)The above projections can be computed in paral-
lel. 2)The information of VNA is fully utilized to improve
each update. 3)As for detail of convergence of the proposed
method, see [6].

Remark 2 (Application to MPEG Super-Resolution)
A great deal of effort has been devoted to derive higher
resolution and quality video sequences from MPEG com-
pressed video sequences [3, 13, 14]. The key of MPEG
super-resolution is how to compensate the effect of quan-
tization in compression. It is reported that the quantiza-
tion noise in spatial domain is a colored Gaussian process
[14]. Therefore, the proposed method can also be applied
to a resolution enhancement of MPEG compressed video
sequences.

4. NUMERICAL EXAMPLE

We generate a sequence of high-resolution images
(xk)14k=1 ⊂ R

192×256 by clipping out larger image. The
clipping region at k th image shifts, relative to k − 1 th
image, from bottom-right to top-left by (1, 2)(k:odd) or
(2, 1)(k:even). After blurring, downsampling of (xk)14k=1
and adding noise, low-resolution images (yk)14k=1 ⊂
R

96×128 are derived. The PSF of blurring filter is a sepa-
rable 2-D Gaussian truncated to 7 × 7 and normalized, and
the noise is a white Gaussian with zero mean and variance
σ2 = 30. The motion estimation is assumed to be accurate.

For the proposed method, each stochastic property set is
defined by using 3 pixels, and 4 independent sets are used
for each iteration. Namely q = 3 and J = 4. In order to
recover kth high-resolution image, 4 low-resolution images
{yk−3, yk−2,yk−1yk} are used. For every iteration, we
use λn = 1.5, wt = 1/5, and Q(k,p) = I where I is an
identity matrix.

A low-resolution image y14 is shown in Fig. 1(a). Fig.
1(b) is a recovered image by NLMS, special case where
p = r = 1 and ρ(k,p) ≡ 0. The number of iterations
is 4MN(= 49152). Application of the proposed method
with threshold ρ(k,p) = 163 
 (q +

√
2q)σ2, which is rela-

tively large threshold in [9], and same number of iterations
gives the results in Fig. 1(c). We can see that estimation
error in c(�,k) makes the right edge of Fig. 1(b) stained,
whereas introduction of the stochastic property set resolves
the problem. This implies that NLMS based method suf-
fers from being severely stained if there are several moving
objects. With several numerical simulations, ρ(k,p) = 163
provides fair noise suppression and robustness to estimation
error without reducing convergence speed. For clarity, close
up versions of Fig. 1 are presented in Fig. 2. A quantitative
comparison in PSNR is given in Table 1. These exemplify
that the proposed method fairly suppresses noise without
losing an edge information as compared with NLMS.
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(a)Low-resolution image (b) NLMS (q = r = 1, ρ = 0) (c) Proposed with ρ(k,p) = 163

Fig. 1. Low-resolution image and recovered high-resolution images

Table 1. Comparison between PSNR values at k = 14

NLMS Proposed
PSNR[dB] 26.0 29.4

(a)NLMS(q = r = 1, ρ = 0) (b)Proposed with ρ(k,p) = 163

Fig. 2. Comparison in detail by closer look

5. CONCLUSION

We presented a novel adaptive super-resolution of videos
based on an embedded constraint version of Adaptive pro-
jected subgradient method. We introduced a novel model
between successive high-resolution images so that we have
detailed information on noise. Then robustness to the addi-
tive noise was realized by incorporating stochastic informa-
tion of the noise.
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