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ABSTRACT

In this paper we present an algorithm for estimating the 3D
model of a deformable shape from a video sequence. Our
method assumes that a deformable shape sequence can be
represented by a linear combination of basis shapes, where
the weights assigned to each basis shape change with time.
While there is existing work on estimating the basis shapes
and their combination coefficients, they lack the crucial in-
formation about the number of basis shapes that are required
for the model. This is usually determined through heuristics
about the physics of the underlying structure. We show that
it is possible to estimate the number of basis shapes from
the tracked points obtained from the video sequence, using
a scaled orthographic camera projection model. This esti-
mate is then used to compute the 3D structure of each of the
basis shapes. We present experimental results in recreating
the structure of the human body during various activities
from a video sequence.

1. INTRODUCTION

Estimating the 3D structure of an object is a classical prob-
lem in video analysis. Some of the recent efforts in this area
has concentrated on estimating the shape of a deformable
object [1]. One of the methods that have been proposed for
this problem is to represent the deforming shape as a linear
combination of certain basis shapes, where the weights as-
signed to each basis shape changes with time, thus resulting
in the sequence of deforming shapes. However, the crucial
information that is lacking in this approach is an estimate of
the number of basis shapes that can effectively represent the
deforming sequence. This has often been decided based on
heuristics about the physics of the underlying structure. In
this paper, we show that it is possible to estimate the number
of basis shapes from the set of feature points on the object
tracked over all the frames. This is followed by reconstruc-
tion of the basis shapes. We assume a scaled orthographic
projection model for the camera. Experiments are shown on
reconstructing the structure of the human body in different
activities.

Some of the commonly used representation of shape are
Fourier descriptors, extended Gaussian images, splines and

deformable snakes, all of which model the shape of contin-
uous curves. Active shape models [2] and Kendall’s statisti-
cal shape theory [3] have considered the shape of a discrete
set of points. Methods for deformation of one shape into an-
other and for comparing the similarity of two shapes have
been proposed in [3, 4]. However, there has been very little
work on shape sequence processing. Some recent work in
this area involves shape-dynamical models for activity [5]
and human motion analysis [6] and for image synthesis [7].
In the domain of 3D shape estimation from 2D images, the
factorization theorem is one well-known approach, though
it is usually applied under the assumption of a scaled ortho-
graphic camera projection model [8]. Its extension to mod-
eling deformable shapes was proposed recently in [1], by
approximating a non-rigid object by a composition of basis
shapes, thus limiting the rank of the measurement matrix of
the entire image sequence. In this paper, we propose a non-
iterative method for estimating the number of basis shapes
that can effectively model a deforming shape and then use
this estimate to reconstruct the shape itself.

The basic input to our estimation procedure is the set
of tracked feature points (i.e. the trajectories) of the object
over all the frames. These trajectories are transformed to a
3D shape space using the ideas of deformable shape model-
ing in [1]. Using statistical models to separate out the “true”
deformations from those induced by noise in the trajecto-
ries, the dimension of this shape space is estimated using
tools from linear algebra. The number of basis shapes re-
quired is determined by the dimension of this shape space.
A complete algorithm for modeling of deformable shapes is
presented.

2. MODELING ALGORITHM

We outline the theory for modeling of deformable shapes
from video sequences. For ease of explanation, we proceed
in the reverse order. We first explain how to estimate the ba-
sis shapes (based on the work in [1]), assuming the number
of basis shapes, K is known. We then show how to estimate
K. Finally, we present our reconstruction algorithm.
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2.1. Estimating 3D Basis Shapes

We hypothesize that each shape sequence can be represented
by a linear combination of 3D basis shapes. Mathemati-
cally, if we consider the trajectories of P points representing
the shape (e.g. landmark points), then the overall configu-
ration of the P points is represented as a linear combination
of the basis shapes as

S =

K∑
i=1

liSi, S, Si ∈ �3×P , li ∈ �. (1)

The choice of K determines the deformability of the shape
sequence and is the focus of the derivation that follows. We
will assume a scaled orthographic projection model for the
camera.

A number of methods exist in the computer vision lit-
erature for estimating the basis shapes. In [8], the authors
considered P points tracked across F frames in order to ob-
tain two F ×P matrices U and V. Each row of U contains
the x-displacements of all the P points for a specific time
frame, and each row of V contains the corresponding y-
displacements. It was shown in [8], that for 3D rigid motion

under orthographic camera model, the rank, r, of

[
U
V

]
has

an upper bound of 3. The rank constraint is derived from

the fact that

[
U
V

]
can be factored into two matrices M2F×r

and Sr×P , corresponding to the pose and 3D structure of
the scene, respectively. In [1], it was shown that for non-
rigid motion, the above method could be extended to ob-
tain a similar rank constraint, but one that is higher than the
bound for the rigid case. We will adopt the last mentioned
method for computing the basis shapes. We will outline the
basic steps of their approach in order to clarify the notation
for the remainder of the paper.

Given F frames of a video sequence with P moving
points, we can obtain the trajectories of all these points over
the entire video sequence. These P points can be repre-
sented in a measurement matrix as

W2F×P =

⎡
⎢⎢⎢⎢⎢⎣

u1,1 · · · u1,P

v1,1 · · · v1,P

...
...

...
uF,1 · · · uF,P

vF,1 · · · vF,P

⎤
⎥⎥⎥⎥⎥⎦ , (2)

where uf,p represents the x-position of the pth point in the

f th frame and vm,p represents the y-position of the same
point. Under weak perspective projection, the P points of
a configuration in a frame f , are projected onto 2D image

points (uf,i, vf,i) as

[
uf,1 · · · uf,P

vf,1 · · · vf,P

]
= Rf

(
K∑

i=1

lf,iSi

)
+ Tf , (3)

where,

Rf =

[
rf,1 rf,2 rf,3

rf,4 rf,5 rf,6

]
∆
=

[
R

(1)
f

R
(2)
f

]
. (4)

Rf represents the first two rows of the full 3D camera ro-
tation matrix and Tf is the camera translation. The trans-
lation component can be eliminated by subtracting out the
mean of all the 2D points (assuming that they are seen in
all views), as in [8]. We now form the measurement matrix
W, which was represented in (2), with the means of each of
the rows subtracted. The weak perspective scaling factor is
implicitly coded in the configuration weights, {lf,i}.

Using (2) and (3), it is easy to show that

W =

⎡
⎢⎢⎢⎣

l1,1R1 · · · l1,KR1

l2,1R2 · · · l2,KR2

...
...

...
lF,1RF · · · lF,KRF

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

S1

S2

...
SK

⎤
⎥⎥⎥⎦

= Q2F×3K .B3K×P , (5)

which is of rank 3K. The matrix Q contains the pose for
each frame of the video sequence and the weights l1, ..., lK .
The matrix B contains the basis shapes corresponding to
each of the activities. In [1], it was shown that Q and B

can be obtained using singular value decomposition (SVD),
and retaining the top 3K singular values, as W2M×P =
UDVT and Q = UD

1

2 and B = D
1

2 VT .

2.2. Estimating the Number of Basis Shapes

The above mentioned rank constraint requires knowledge
of K in order to estimate the shape and motion parameters.
This is usually determined heuristically from the physics of
the object whose structure is being estimated. We now pro-
vide a theoretical method for estimating K by reinterpreting
the above equations in stochastic framework.

Consider the set of coordinates representing the shape
of the deformable object in a particular frame of a video
sequence to be the realization of a random process. The
sequence of frames depicts the deformation of the shape,
along with the effects of the 3D translation and rotation.
Represent the x and y coordinates of the sampled points in a
single frame as a vector y = [u1, ..., uP , v1, ..., vP ]T . Then,
from (5), it is easy to show that for K basis shapes (K is
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unknown)

yT =
[
l1R

(1), ..., lKR(1), l1R
(2), ..., lKR(2)

]
∗⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1

...
Sk

0

0

S1

...
Sk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ ηT ,

i.e., y = (q1×6Kb6K×2P )T + η

= bT qT + η, (6)

where η represents the noise in the sequence of tracked points
and is assumed to be a zero-mean random process. The
vector q is obtained by juxtaposing two consecutive rows
of Q, corresponding to the same image frame, in equation
(5). The matrix b, which is constant across all the frames,
is obtained by duplicating B in equation (5), as shown in
equation (6).

Assuming that the coordinates of the points representing
the shape in all the F frames can be considered to be real-
izations of the same random process, with possibly different
noise variances, we can compute the correlation matrix of y.
Let Ry = E[yyT ] be the correlation matrix of y and Cη

the covariance matrix of η. Hence,

Ry = bT E[qT q]b + Cη. (7)

The correlation matrix, Ry, is of size 2P × 2P and can
be estimated from the sequence of points representing the
shapes as Ry = 1

F

∑F
f=1 yfy

T
f , where yf is the vector

y (defined above) in the frame f . The expectation on the
right hand side of equation (7) can be computed similarly
as E[qT q] = 1

F

∑F
f=1 qT

f qf , where qf is the vector q (de-
fined above) for frame f and is obtained from the matrix Q

in equation (5).
The noise covariance matrix, Cη, represents the accu-

racy with which the feature points are tracked and needs to
be estimated from the image frames. Since η need not be
an IID noise process, Cη will not necessarily have a diago-
nal structure (but it is symmetric and positive semi-definite).
Now, consider the diagonalization of Cη = PΛPT , where
Λ = diag[Λs, 0] and Λs is an L×L matrix of non-zero sin-
gular values of Λ. Let Ps denote the orthonormal columns
of P corresponding to the non-zero singular values. There-
fore,

Cη = PsΛsP
T
s . (8)

Premultiplying equation (6) by (PsΛ
1

2

s )−1, we see that (6)
becomes

ỹ = b̃T qT + η̃, (9)

where ỹ = Λ
−

1

2

s PT
s y is a L × 1 vector, b̃T = Λ

−
1

2

s PT
s bT

is a L × 6K matrix and η̃ = Λ
−

1

2

s PT
s η. It can be easily

verified that the covariance of η̃ is an identity matrix IL×L.
This is known as the process of “whitening”, whereby the
noise process is transformed to be IID.

Representing by Rỹ the correlation matrix of ỹ, it can
be seen that

Rỹ = b̃T E[qT q]b̃ + I = ∆ + I, (10)

where, for simplicity, ∆
∆
=b̃T E[qT q]b̃. Now, Rỹ is of di-

mension L × L, b̃T is of rank L × 6K and E[qT q] is of
rank 6K × 6K. Thus, ∆ has maximum rank 6K, where K

is the number of basis shapes. For a general 3D scene un-
dergoing translation and rotation, the rank will be 6K. This
is based on the fact that if Am×n = Fm×rGr×n, then the
Rank(A) ≤ r. Representing by µi(A) the ith eigenvalue
of the matrix A, we see that

µi(Rỹ) = µi(∆) + 1, for i = 1, ..., 6K, and

µi(Rỹ) = 1, for i = 6K + 1, ..., L. (11)

Hence, there are 6K eigenvalues above 1. By counting the
number of eigenvalues that are greater than 1 and dividing
it by 6, we can obtain an estimate of K, which is the num-
ber of basis shapes required to represent the sequence of
deforming points.

2.3. 3D Reconstruction Algorithm for Deformable Shapes

The complete 3D modeling algorithm for deformable shapes
is as follows.

1. Compute the measurement matrix, W, as in equation
5.

2. Estimate the number of basis shapes, K, according to
the theory in Section 2.2.

3. Using the estimate of K, compute the 3D structure,
combination coefficients and motion parameters of
the basis shapes, according to Section 2.1.

4. Using equation (1), compute the sequence of deformable
3D shapes.

3. EXPERIMENTAL EVALUATION

We now present results on 3D reconstruction of deformable
shapes using the algorithm presented in Section 2.3. We
used the motion-capture data available from Credo Inter-
active Inc. and Carnegie Mellon University in the BioVi-
sion Hierarchy and Acclaim formats. It has a number of
examples of different activities and is thus a rich dataset
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Fig. 1. Plot of the eigenvalues, in decreasing order of mag-
nitude, for the (a) walk sequence and (b) crawl sequence.

for studying shape sequences 1. The combined dataset in-
cluded a number of subjects performing various activities,
like walking, jogging, sitting, crawling, brooming, etc. For
each of these activities, we had multiple video sequences.
Also, many of the activities contained video from different
viewpoints. We will show here the results of the 3D re-
construction on two activities in this dataset, walking and
crawling.

Using the video sequences and the theory outlined in
Section 2.2, we estimated the number of basis shapes for
each of the sequence. For the walk sequence, the number
of eigenvalues greater than one was 35, which resulted in
a value of K (= number of eigenvalues greater than one/6)
to be 5.8. A plot of the eigenvalues, in decreasing order of
magnitude, for the walk sequence is shown in Figure 1(a).
We used six basis shapes for reconstructing the 3D model.
For the crawl sequence, the number of eigenvalues over one
was 48, and the value of K was 8. A plot of the eigenvalues,
in decreasing order of magnitude, for the crawl sequence is
shown in Figure 1(b).

The 3D model, combination coefficients and motion pa-
rameters were computed using the method described in Sec-
tion 2.1. The first basis shapes are shown in Figure 2. Most
of the information was contained in the first basis shape
and it was the only one which was physically similar to
the original shap. The remaining basis shapes, however,
contributed to reducing the overall error in the reconstruc-
tion. We resynthesized the original sequences using the ba-
sis shapes and combination coefficients obtained from equa-
tion (5). Equation (3) was used for the synthesis. In both the
cases, the error at none of the feature points was more than
1 pixel. If only the first basis shape was used for the synthe-
sis, the error at some of the points in some of the frames was
as high as five pixels. Using the basis shapes for computing
similarity between various activities is an interesting prob-
lem in its own right that we have addressed in a separate
paper.

1While there are a number of standard datasets for shapes, we could not
fi nd any large database for the study of shape sequences.

(a) (b)

Fig. 2. Plots of the first basis shape, S1, for walk and crawl
sequences, respectively.

4. CONCLUSIONS

In this paper, we have presented an algorithm for 3D model-
ing of deformable shapes from video sequences. Our method
assumes that a deformable shape can be represented as a
linear combination of certain basis shapes, where the com-
bination coefficients change with time. While there exist
methods that had addressed this issue, they lacked the cru-
cial input of the number of basis shapes required to model
the deformable shape, which was usually chosen heuristi-
cally. We show that it is possible to estimate the number of
basis shapes from the video sequence, followed by 3D mod-
eling of these basis shapes. The procedure assumes a scaled
orthographic camera projection model. We present results
of 3D modeling on a few human activities, including details
of the estimation of the number of basis shapes.
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