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ABSTRACT

An original image magnification method called induction was

proposed recently [1], whose specificity is to state the problem

of image magnification as an inverse problem of image reduction.

The methods usually employed, like interpolation, fail to verify

this constraint, which provides a formalism for magnification and

a framework for evaluating the quality of the enlarged images. In

this paper, we revisit the induction through a new interpretation

using wavelets. We put forward major improvements including a

direct implementation, much more efficient than the iterative algo-

rithm proposed previously.

1. MOTIVATION

Image magnification is required in many facets of image process-

ing, such as still photographs zooming. The problem consists in in-

creasing the resolution of a digital image by using a priori knowl-

edge on the scene underlying the image. The frequency content,

available in the initial image, is fundamentally limited by the sam-

pling theorem, which can be defeated if a model is able to predict

the missing high frequencies needed to reconstruct the edges in the

enlarged image.

Linear magnification methods, whose best known represen-

tative is spline interpolation [2], fail to add in extra details, and

artifacts like blurring or ringing show up. Many nonlinear interpo-

lation techniques (e.g. [3, 4]) have been proposed, which estimate

the localization of existing edges with subpixel accuracy, and syn-

thesize them at the higher resolution. They produce pleasant im-

ages, but there is no clear relationship ensuring coherence between

the initial and the enlarged images.

A solution to this problem was proposed in [1], with a method

called induction: a process has been defined to regularize the en-

larged image, obtained with whatever magnification method, in

order to restore the information lost during the enlargement, but

present in the initial image. To this end, magnification is stated
as an inverse problem of reduction: the enlarged image should,

when reduced, give back the initial image. This principle was also

adopted in other works like [5] and [6], which always amount to

optimize a likelihood criteria under constraint, whereas we use a

more general and more efficient set-theoretic approach.

In this paper, we redefine the induction through a new for-

malism which provides a framework for image resizing and gives

strong fundations to the method. A fast implementation and a gen-

eralization called oblique induction are proposed and explained

through the wavelet theory.

2. PRINCIPLES OF IMAGE RESIZING

In order to resize a digital image I = (I[k, l])(k,l)∈Z2 , its for-

mation process needs to be hypothesized. If the pixels I[k, l] are

samples of an underlying scene f(x, y) continuously defined, i.e.

I[k, l] = f(x, y)|x=k,y=l, then interpolation is well-suited for

magnification: one only has to estimate a function that goes through

the pixel values, and resample it on a finer grid. Such a model is

not realistic for natural images: since f is not bandlimited, I would

be polluted by aliasing with such a formation process.

Therefore we adopt a more appropriate model, where a dig-

ital image is produced by an imaging device with point-spread-

function (PSF) Γ(x, y). The acquisition is supposed free of noise,

and can be modeled by a convolution followed by sampling:

I[k, l] = f ∗ Γ (k, l), (k, l) ∈ Z
2. (1)

Now we define I(α), the resized version of I by a factor α, as

the image provided by the same imaging device if the scene f had

been dilated by a factor α in each direction, that is

I(α)[k, l] =
`

f(α•, α•) ∗ Γ
´

(k, l) (2)

=
1

α2

`

f ∗ Γ(•/α, •/α)
´

(αk, αl). (3)

Here α > 1 corresponds to a reduction, α < 1 to a magnifica-

tion. In this paper we only deal with the case where α is an integer,

denoted a. Now let us assume that Γ(x, y) verifies a two-scale re-

lation with integer dilation factor a ≥ 2:

Γ(x/a, y/a) = a2
X

(k,l)∈Z2

R[k, l] Γ(x − k, y − l). (4)

Combining Eqns. (3) and (4) provides us with the way to re-

duce an image by an integer factor a: reducing simply consists in

discrete filtering followed by downsampling, which is defined by

the operator [I]↓a =
`

I[ak, al]
´

(k,l)∈Z2 , that is to say

I(a) = [ I ∗ R ]↓a. (5)

This is the usual way for reducing an image, here derived

through the proposed image model. The Shannon theorem is ver-

ified a posteriori, if Γ (then R) is lowpass, which is the case with

most practical imaging devices. Practically, Γ is often unknown,

then R must be chosen directly with good properties [7].

Note that this formalism is nothing else than the basic prin-

ciple of the multiresolution theory [8]: whatever the resolution,

the image pixels are scalar products of the scene with dilates and

translates of a single prototype Γ. The reduction also amounts to

the lowpass analysis in a wavelet decomposition.
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Given an image I , the problem of its magnification is still open

because f is unknown, then Eqn. (3) is of no help. But according

to our formalism, a magnification followed by a reduction with the

same factor is a lossless process: the enlarged image I(1/a), when

reduced, gives back the initial image:

[ I(1/a)∗ R ]↓a = I. (6)

This condition, called the reduction constraint, leads naturally

to state the magnification operation as a pseudo-inverse of the re-

duction, as we do in the next sections.

3. INDUCTION IN ITS ORIGINAL FORM

Image magnification is an ill-posed problem. Given an initial im-

age I and a reduction filter R, there is a whole set, called the in-
duced set Ω, of enlarged images verifying the reduction constraint:

Ω = {X | [ X∗ R ]↓a = I}. (7)

The true enlarged image I(1/a) must be estimated among Ω.

For this purpose, let us consider a visually pleasing enlarged im-

age J , which does not verify the reduction constraint. J , called the

inducing image, can be obtained with any magnification method,

e.g. interpolation. The induction simply consists in projecting or-

thogonally J onto Ω, so as to obtain an induced image K which

belongs to Ω, as illustrated in fig. 1.

The method proposed in [1] uses projection onto convex sets
(POCS) techniques [9], consisting in expressing each condition on

the enlarged image to be constructed, as a convex constraint set

Ωk,l in the image space. Then an image lying in the intersection

Ω =
T

(k,l)∈Z2 Ωk,l of all constraint sets, is a solution of the prob-

lem. Here each Ωk,l is the set of enlarged images that satisfy the

reduction constraint at pixel (k, l). It is the affine space

Ωk,l = {X | X∗ R [ak, al] = I[k, l]}. (8)

In its original form, the induction is an iterative algorithm:

during the (n + 1)th iteration, the image Jn is updated in place by

successive projections onto each Ωk,l

Jn+1 = ProjΩN−1,M−1
◦ · · · ◦ ProjΩ0,1

◦ ProjΩ0,0
(Jn), (9)

where I is supposed of size N × M , and J0 = J is the inducing

image. The induced image K = J∞ is obtained at convergence.

The choice of the operator ProjΩk,l
is detailed in [1].

Thus the induction provides the image in Ω which is the clos-

est to J in the �2 sense (and, to some extent, in the visual sense).

The induction acts as a post-processing, regularizing the inducing

I

magnification

induction

reduction

J
K

set Ω
induced

Fig. 1. Induction principle.

image so that it is in accordance with our image formation model,

through the reduction constraint. The choice of the inducing image

is therefore crucial, as we will show in section 6.

4. FAST INDUCTION

Before generalizing the induction process, we present in this sec-

tion a major improvement, which is a non-iterative, therefore much

faster, implementation of the induction method. To this end, let us

go back to the principle behind the iterative method: the difference

between I and the reduced version of J is back-propagated in J .

This can be implemented as depicted on the following flow-graph:

���
��

��
��

−
+ � ↑aEn

+R̄ Jn+1↓aRJn

I

where we used the reversion : R̄[k, l] = R[−k,−l]. The conver-

gence to K is ensured, albeit slower than with the POCS methods,

which only optimize the way the correction is done during each

iteration. Now if we note E =
P

n∈N
En and introduce the up-

sampling operator [ · ]↑a which inserts a − 1 zeros between each

sample in each direction, we get

K = J + [ E ]↑a ∗ R̄. (10)

K verifies the reduction constraint, then

[ K ∗ R ]↓a = I
⇔ [ (J + [ E ]↑a ∗ R̄) ∗ R ]↓a = I
⇔ [ J ∗ R ]↓a + E ∗ [ R̄ ∗ R ]↓a = I
⇔ E = (I − [ J ∗ R ]↓a) ∗ ([ R̄ ∗ R ]↓a)−1.

(11)

Hence K can be computed directly, simply by inserting, before

the upsampling step, the inverse filter C−1 = ([ R̄ ∗ R ] ↓ a)−1

which cancels the correlation between R and its a−translates:

��
��

� ��
��

�−
+

+

↑a R̄C−1

K

↓aRJ

I

This fast implementation will allow us to generalize the induc-

tion in the following section.

5. OBLIQUE INDUCTION

We can now improve the induction process, by allowing the pro-

jection of the inducing image onto the induced set to be oblique,

and not necessarily orthogonal any more. This yields

K = J + [ I − [ J ∗ R ]↓a ]↑a ∗ A, (12)

where A is a biorthogonal partner (see [10]) of R, i.e. a filter that

verifies [ A∗R ]↓a = δ(0,0), with δ(k,l)[k, l] = 1 and δ(k,l)[i, j] =
0 if i �= k or j �= l. The oblique induction is implemented as:

��
��

� ��
��

�−
+

+

↑a A
K

↓aRJ

I
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The orthogonal induction is a particular case where A = R̃ is

the dual filter of R

R̃ =
`

[[ R̄ ∗ R ]↓a]↑a
´−1∗ R̄ = [ C−1 ]↑a ∗ R̄. (13)

This dual filter is not necessarily the best biorthogonal partner

of R. Our experiments indicate that a better choice for most of

images, whatever the filter R, is based on the cubic splines, whose

interest for image processing is well known [2]. This corresponds

to the choice

A =
`

[[ B3 ∗ R ]↓a]↑a
´−1 ∗ B3, (14)

where B3 is obtained by sampling the centered cubic B-spline

β3(x, y) (see [2]) with step 1/a: B3[k, l] = β3(k/a, l/a).

From this point, we will consider that all the filters are separa-

ble. Thus we adopt 1-D notations for the filters. For example, for

a magnification by a factor a = 2, B3 = [ 1
48

, 1
6
, 23

48
, 2

3
, 23

48
, 1

6
, 1

48
].

The freedom in the choice of A provided by the oblique in-

duction allows to perform the whole process only with FIR filters,

without involving any inverse filter. If for example R=D9 from the

D9/D7 pair used in JPEG2000 [11], A=D7 is a relevant choice.

The role of A will be detailed in the next section.

6. INTERPRETATION IN TERMS OF WAVELETS

Eqn. (12) shows the induction as a regularization of the inducing

image. The lowpass component of J is indeed discarded and re-

placed by I: the induction consists in correcting the low-frequency

part of the inducing image, while keeping its high-frequency part.

Eqn. (12) can be rewritten under the more interesting form:

K = J − [ [ J ∗ R ]↓a ]↑a ∗ A
| {z }

H

+ [ I ]↑a ∗ A
| {z }

L

. (15)

In other terms, the induced image is equal to L = [ I ] ↑ a ∗
A plus a high-frequency image H corresponding implicitly to the

synthesis of the wavelet coefficients of J at the finest resolution,

as illustrated in Fig. 2 (with a = 2). The induced set can now be

characterized more precisely: it is the affine space

Ω = {L̃ + H | H ∈ V ⊥
R } = {L + H | H ∈ V ⊥

R }, (16)

where VR = Vect
`

(R ∗ δak)k∈Z

´

is the vector space generated

by R and its a−translates, and L̃ is the image I linearly enlarged

with the dual of R (see Eqn. (13)): L̃ = [ I ]↑a ∗ R̃.

K

� �

�������

���������

�

magnification
I

J
wavelet transf.

I

LL LH

HHHL

LH

HL HH

inverse
wavelet transf.

Fig. 2. Wavelet interpretation of the induction.

Among Ω, L̃ is the image with minimal �2 norm. If the oblique

induction is performed, A �= R̃, and L can be interpreted as

L = L̃ + H̃ where H̃ ∈ V ⊥
R is the part of high frequencies which

can be linearly predicted from I . If this prediction is good, that is

A is chosen correctly, the high frequencies that are added in dur-

ing the induction itself (under the form of the image H) cannot

be predicted linearly from I . Ideally, H should be the intrinsicly
nonlinear high frequencies that lack in L in order for the enlarged

image to have a good quality, particularly near edges, where a lin-

ear magnification will necessary fail to give enough sharpness.

These notions are summarized in Fig. 3. Clearly, the role of

the inducing image J is crucial. The considerations above indicate

that J must be obtained from I by nonlinear magnification, creat-

ing coherent high frequencies for a good rendering of edges. The

induction takes care of the low frequencies, by regularizing J so

that it belongs to the induced set.

We can further notice that:

• if the inducing image is uniform (e.g. all pixels to zero), no high

frequency is brought, and K = L.

• if the inducing image is obtained by linear magnification from

I: J = [ I ]↑a∗B, with B not a biorthogonal partner of R, say by

interpolation, one can calculate a filter C so that K can be com-

puted directly, without using the induction process, by K = [ I ]↑
a ∗ C. Moreover, C �= A so all the efforts for carefully designing

the filter A are in vain, because L = [ I ]↑a ∗A is the best we can

do for predicting the high frequencies linearly.

As we have shown, the induction process combines the best of

two worlds: the information available in I is synthesized linearly

at the higher resolution, and the required high-frequency details

are created heuristically by the inducing magnification method.

Therefore, the whole process can be interpreted as a nonlinear ex-

trapolation in the wavelet domain.

7. RESULTS

Fig. 4 illustrates the good results obtained by oblique induction. A

large factor a = 4 is employed so that the differences between the

images are highly visible. The inducing method of Jensen et al. [3]

is used, as well as R = [ D9 ]↑2∗D9 and A = [ D7 ]↑2∗D7. The

nearest neighbor interpolated image is provided to show the infor-

mation available in the initial image. The image L suffers from a

staircase effect due to the separability of the linear enlargement,

and from ringing and blurring artifacts due to the lack of high fre-

quencies. On the other hand, the image J is pleasing, in spite of

the painting effect due to the distortion of the low frequencies. K

VA

L

L̃
VR

V ⊥
R

K

H

Ω

J

Fig. 3. Oblique induction in terms of projections.
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is free from these artifacts, and is coherent with I . See in particu-

lar the details of the camera, which have almost disappeared in J ,

and are restored in K.

To validate the induction numerically, we propose to reduce an

image O, so as to obtain an image I which is enlarged by oblique

induction and then compared to O, using a = 2, R = D9, A =
D7. This yields the PSNR results shown in Tab. 1 for several

well-known images. Two inducing methods have been tested: the

magnification of Jensen et al., and the nonlinear interpolation of

Ramponi et al. [4]. The first column gives the PSNR for the image

L, corresponding to a uniformly black inducing image (which is

also the image O passed through the lowpass analysis/synthesis

branch of the D9/D7 biorthogonal filterbank).

The numerical results are in accordance with the visual qual-

ity: the large differences between K and L with both inducing

methods shows that the prediction of the finest wavelet coefficients

is efficient, in particular with the method of Jensen. This suggests

to use the induction as a framework for evaluating the quality of the

magnification methods in the literature, as will be done in future

work. Note that using A = R̃ instead of D7 leads to an average

penalty of 0.1 dB for the induced images, whereas the spline filter

of Eqn. (14) yields an average improvement of 0.05 dB.

There is another potential application in resolution-scalable

lossless image coding: as it acts like an extrapolation in the wavelet

domain, the induction can be seen as an additional prediction step

in an implementation based on the lifting scheme.

nearest neighbor interpolation image L

inducing image J induced image K

Fig. 4. Part of camera image enlarged by a factor of 4.

image
black

K = L
Ram-
poni J

Ram-
poni K

Jensen
J

Jensen
K

Lena 35.26 34.51 35.14 33.34 35.50
Baboon 24.50 24.13 24.44 23.46 24.64
Lighthouse 26.77 26.24 26.72 26.02 27.12
Camera 26.96 26.79 27.22 26.22 27.51
Peppers 33.47 34.45 34.85 32.99 34.46
Bike 26.39 26.51 27.19 25.97 27.41
Cafe 23.60 23.25 23.81 22.49 24.05

Table 1. Images reduced then magnified (a = 2), compared with

their original counterparts, without (J) and with (K) induction.

8. CONCLUSION

In this paper, we proposed a fast implementation, a generalization,

and a better understanding of the induction process. The method is

flexible, through the choice of the filters and of the inducing mag-

nification method, for which we proposed practical examples. The

formalism introduced justifies the use of induction, in comparison

with traditional magnification methods. We currently continue our

work on the choice of the inducing method and on the extension to

non-integer magnification factors.
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