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ABSTRACT 

This paper proposes a new pixel-wise perceptual mask 

based on a wavelet visible difference predictor (WVDP) 

for watermarking. The mask is very effective that the 

embedding energy can be sufficiently exerted, and that the 

annoying global parameter controlling the watermark 

strength as in usual schemes can be dropped off. The 

watermark sequence is drawn from a uniform distribution 

and added to all the detail bands after being masked. In the 

detection phase, a correlation detector is used, and the 

original image is not required. Experimental results show 

that our scheme provides very good performance both in 

terms of watermark unobtrusiveness and robustness. 1

1. INTRODUCTION 

Watermarking has been proposed to be a possible solution 

for copyright protection of digital information and great 

advances in technical aspect have been made. Today it is 

widely accepted that unobtrusiveness and robustness are 

both essential requirements of robust watermarking [4], [5]. 

To ensure that the watermark is unobtrusive, the 

embedding energy has to be limited under a comparatively 

low level. However, with more energy there is more room 

to improve robustness of the watermark. The conflict of 

these two features prompts the adoption of characteristics 

of the human visual system (HVS), which has been 

extensively studied [3] and actively employed in image 

compression and image quality discrimination [8]-[10]. 

The Discrete Wavelet Transform (DWT) that operates 

in a similar way as the multiple channels of the HVS has 

been proved to be one of the most powerful techniques for 

image processing. A variety of DWT-based watermarking 

schemes integrating models of the HVS have also been 

proposed in the last several years. In [4], the model of [7] is 
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used: a static weight is determined, based on typical 

viewing conditions, for each subband that varies in spatial 

frequency and orientation, and then the watermark signal is 

weighed and added to the wavelet coefficients. Thus the 

HVS is exploited only up to a subband resolution. In [5], 

Barni et al. build a pixel-wise mask based on the work by 

Lewis and Knowles [10], then they scale the watermark 

sequence and add it to the largest detail bands. The model 

used in [5] does not account for variations of viewing 

condition, and besides, the watermark is inserted only into 

the first decomposition level, thus can not fully exert the 

embedding energy. El-Khamy et al. [6] calculate the just 

noticeable distortion (JND) profile for each detail 

coefficient at each resolution level and orientation using 

Chou’s model [9], in which the JND profiles are originally 

derived in spatial domain. So this model cannot be 

incorporated into the DWT domain directly. 

In this paper, we present a new perceptual mask that 

exploits a WVDP [1], [2], which takes into account the 

fundamental properties of the HVS, and operates directly 

on DWT coefficients, thus can be easily integrated into a 

DWT-based watermarking scheme. Based on the WVDP, a 

pixel-by-pixel mask covering all the detail subbands is 

built, which allows us to exert almost all the embedding 

energy to make the watermark more robust to various 

attacks while retaining invisible. In experiments, the 

effectiveness of our watermarking method is shown. 

2. WATERMARKING USING A WVDP 

2.1. Watermark Insertion 

We first decompose the host image through DWT into four 

levels. The wavelet transform used here is the linear-phase 

9/7 biorthogonal wavelets which have been widely 

exploited in image compression [7], [8] and are also used in 

the WVDP [1]. Let the DWT coefficients be denoted by 

lC , where l represents the resolution level at l {1, 2, 3, 4}, 

and  indexes frequency orientation as follows: {1, 2, 3, 

4}={LL, HL, LH, HH}, where low and high are in the 

order horizontal-vertical. The watermark consists of a 

pseudorandom sequence drawn uniformly from the interval 
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[ 1, 1]. The reason for selecting such a distribution will be 

made clear in section 2.2. The DWT coefficients at all the 

detailed subbands, i.e., only excluding the coarse band, are 

modified to embed the watermark: 

),(),(),(),(
~

jimjiwjiCjiC llll ,                 

l=1, 2, 3, 4, =2, 3, 4,            (1) 

where lC
~

 refers to the watermarked DWT coefficients, 

lm  is the watermark sequence, and lw  corresponds to the 

computed local perceptual weight exploiting the masking 

characteristics of the HVS. It is suggested by experimental 

tests that not to modify the low pass band, as it can better 

preserve the watermark invisibility, and, further, it is 

sufficient for all the detail subbands to cover nearly all the 

embedding energy. As mentioned above, a global 

parameter controlling the watermark strength [5], [6] is no 

longer needed in the embedding rule. 

2.2. Perceptual Masking 

Bradley describes a WVDP which can reliably predict 

visual difference between an original and noisy image 

directly from the wavelet coefficients [1]. Here we take the 

inserted watermark as the noise in Bradley’s model, and 

then use the WVDP to predict the maximum difference that 

we can introduce into the DWT coefficients, thus build a 

mask that takes account of the local noise sensitivity of the 

human eyes for watermark embedding in the DWT domain. 

Bradley’s model mainly considers these fundamental 

properties of the HVS: frequency sensitivity, signal content 

sensitivity, and psychometric function and probability 

summation. Some modifications of Bradley’s model will 

be introduced in order to better fit the model into the 

watermarking system. 

The frequency sensitivity of the HVS is not explicitly 

modeled in the WVDP. Instead, a threshold elevation 

function [3] is built to implicitly account for this property. 

The threshold elevation function consists of two parts: a 

minimum threshold when there is little or no contrast 

masking and an increasing masking function of image 

contrast. The minimum of the threshold elevation function 

is based on the psychovisual quantization experiments of [7] 

and is modeled as follows: 
2

0 ))log()(log()log()),(log( fgfkalnc

),log()1(2)log( Lplq               (2) 

where cn  denotes the coefficient detection threshold, and f

is the spatial frequency determined by both viewing 

conditions and wavelet level, calculated as lrf 2

cycles/degree [7], where r is the viewing resolution in 

pixels/degree. Other constants in (2) take values as 

a=0.495, k=0.466, 0f =0.401, g =1.501, 1, and 0.534, 

and q  is 2

Lp , HL pp , and 2

Hp , for the LL, HL/LH, and 

HH subands, respectively. For the linear-phase 9/7 

wavelets, we have Lp =0.788486 and Hp =0.852699. 

The minimum threshold, cn , accounts for the masking 

effect only up to a subband resolution. The complete 

masking function, which must also take account of the 

signal content sensitivity, i.e., the masking effect due to the 

actual value of the DWT coefficients, lC , is given by: 

),()(),,(max),,,( jiClblnjilT lce ,         (3) 

where b is necessary in the case of the critically sampled 

DWT to reflect the fact that coefficients at higher levels 

represent decreasing resolutions and therefore have a 

reduced masking effect [2]. Typical values for four-level 

decomposition are: b(l)=4.0, 2.0, 1.0, 0.5, for l=1, 2, 3, 4, 

respectively [2]. 

The threshold elevation function eT  and the coefficient 

differences ( ),(
~

),(),( jiCjiCjiC lll ) are used 

against the psychometric function [3] to calculate a 

detection probability for each coefficient in every subband: 

)),,,(/(),(exp1),,,( jilTjiCjilP elb ,  (4) 

where =2.0, and /1))5.01ln(/(1 .

The detection probability summation is given by: 
4

1

4

2

)),,,(1(1),(
l

bd jilPjiP ,             (5) 

where dP  is the total probability of detection resulting 

from all bands as a function of the location of every pixel in 

the spatial domain. 

For our watermarking scheme, we set dP =0.5 which 

corresponds to one JND. Noticing that there are totally 3L

detail subbands for L-level wavelet decomposition, the 

coefficient detection probability is determined with (5) by: 

L

b jilP 3)5.01(1),,,( .                     (6) 

Combining (4) and (6), we get the predicted JND, i.e., 

the perceptual weight, for every DWT coefficient: 

1/
( , ) (3 ) ( , , , )

l e
w i j L T l i j .              (7) 

From the above, we can see that the perceptual 

weighing function is derived originally from Watson’s 

model [7] which accounts for uniformly distributed noise 

over [ 1, 1]. Therefore, the uniform distribution for 

generation of watermark sequence was selected. 

2.3. Watermark Detection 

As usual, a correlation detector without referring to the 

original image as described in [5] is used. In particular, the 

correlation is calculated as: 
4

1

4

2 ,

),(),(
~1

l ji

ll jimjiC
N

,               (8) 

where N represents the number of all the DWT coefficients 

in detail subbands, i.e., the length of the watermark 

sequence.
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To determine the detection threshold T , just the worst 

case that the image is watermarked with a watermark ln

other than the test watermark lm  is needed to be 

considered [5]. It is assumed that is normally distributed, 

and lC  (l {1, 2, 3, 4}, {2, 3, 4}) is zero-mean 

independent random variable [5]. Observing that lC  and 

lm  are independent, and that lm  is uniformly distributed 

over [ 1, 1], the mean and variance of  under the worst 

case (denoted by w ) can be computed as 0
w

 and 

4

1

4

2 ,

222

2

2

2 ),(),(
l ji

lml

m jiwEjiCE
Nw

,   (9) 

respectively, where 2

m  is the variance of lm . Recalling 

the insertion rule stated in (1), we can find that: 

2222 ),(),(),(
~

jiwEjiCEjiCE lmll ,    (10) 

then we have: 

4

1

4

2 ,

2

2

2

2 ),(
~

l ji

l

m jiCE
Nw

,          (11) 

with which we can use the unbiased estimate of 2

w
 in 

practice: 

4

1

4

2 ,

2

2

2

2 ),(
~

l ji

l

m jiC
Nw

.             (12) 

Let’s denote the probability of false detection by fP ,

then we can force that [5]: 

22
erfc

2

1

w

T
Pf ,                      (13) 

thus T  is determined. 

3. EXPERIMENTAL RESULTS 

In the experiments that follow, we set that r=32 

pixels/degree (which corresponds to typical office viewing 

of desktop computer images [7]), and impose that 
810fP  (thus we have 

w
T 615.5  [5]). 

First, the watermark unobtrusiveness is tested. The 

original test image Lena and its watermarked version are 

showed in Fig. 1(a) and Fig. 1(b), respectively. Fig. 2(a) is 

the watermark signal, i.e., the difference between the 

original image and the watermarked one, from which we 

can see that the watermark is very structured, taking 

advantage of the local characteristics of the image. Fig. 

2(b), (c), and (d) further illustrate the orientation-adaptive 

properties of our masking model: Fig. 2(b), which is the 

perceptual weights for the HL subband at the first 

decomposition level, demonstrates strong masking effect 

along horizontal direction, and Fig. 2(c) and (d) indicate 

strong vertical and diagonal masking, respectively. 

To verify that our scheme can better exert embedding 

energy, we compare our results with that of two standard 

masking techniques, [4] and [5]. The quality metrics used 

here are PSNR and weighed PSNR (wPSNR). The wPSNR 

metric is implemented in the well-known benchmarking 

suite, Checkmark [10], taking account of properties of the 

HVS. We set the watermark strength for each algorithm so 

that the wPSNRs of the watermarked images are 

approximately the same, i.e., with the same perceptual 

quality. Then, we apply the PSNR metric to find out how 

much watermark energy has been embedded (specifically, 

the lower the PSNR, the higher the embedded energy is). 

The results obtained on various standard images are 

reported in Table 1, which prove the effectiveness of our 

method. 

The robustness of the proposed technique against 

standard lossy compression coding distortion, such as 

JPEG and JPEG2000 (based on JasPer Software [11]), is 

                    (a)                                           (b) 

Fig. 1. (a) Original image. (b) Watermarked image. 

                        (c)                                           (d) 

Fig. 2. (a) The watermark: absolute difference between the 

original image and its watermarked version. (b) Perceptual 

weights for the HL, (c) LH, and (d) HH subbands at the first 

level, respectively. Fig. 2(a) ought to be double size of Fig. 2(b), 

(c) and (d), but here we scale them to be the same size for the 

convenience of display, and all the figures have been magnified 

to be visible. 

                    (a)                                           (b) 
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also evaluated. Different quality factors are set, and then 

the compression coding is applied to the watermarked 

image. At the detector side, 1000 different watermarks, 

among which is the genuine one, are tested against the 

corresponding threshold. The results along with the highest 

fake response of the detector are shown in Fig. 3 and Fig. 4. 

From Fig. 3 we can see that, with JPEG coding, our 

algorithm can withstand a quality factor of as low as 6%, 

and that the highest fake response is always lower than the 

detection threshold and the true response. In the case of 

JPEG2000 coding, the detector produces correct result 

until the compression factor reaches 0.2 bpp, and, again, 

the fake watermarks are successfully distinguished. 

4. CONCLUSION 

A new perceptual mask for wavelet-based watermarking is 

presented. Based on the WVDP that considers 

characteristics of the HVS, we build an effective pixel-wise 

mask, which covers all the detail DWT coefficients and 

helps to exert almost all the embedding energy. Also due to 

the effectiveness of our perceptual mask, the global 

parameter controlling the watermark strength in the usual 

insertion rule becomes needless. Experimental results 

demonstrate that, with the same perceptual quality, our 

scheme can obtain higher embedding energy compared 

with other standard wavelet- and HVS-based algorithms, 

and that the robustness of our scheme is very satisfying.  
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Table 1. Comparisons of embedding energy (indicated by 

PSNR) under the same visual quality (indicated by wPSNR). 

Test 

Image 

Quality 

Metric 

Our 

Scheme

Podilchuk

& Zeng’s 

Scheme

Barni 

et al.’s 

Scheme

PSNR 32.939 33.024 34.592 
Lena 

wPSNR 37.041 37.032 37.025 

PSNR 29.540 30.045 31.558 
Baboon 

wPSNR 37.504 37.492 37.519 

PSNR 32.886 33.086 34.681 Camera 

Man wPSNR 36.880 36.869 36.892 

PSNR 30.306 31.284 32.553 Fishing 

Boat wPSNR 36.464 36.472 36.453 

PSNR 31.591 31.678 33.856 
Watch 

wPSNR 37.767 37.759 37.771 

Fig. 4. Robustness test against JPEG2000 coding with 

decreasing quality factor. 

Fig. 3. Robustness test against JPEG coding with decreasing 

quality factor. 

100 90 80 70 60 50 40 30 25 20 15 10 8 6 4 2 1
0

0.4

0.8

1.2

1.6

2

2.4

Quality Factor

D
e
te

c
to

r 
R

e
s
p
o
n
s
e

true response

threshold

highest fake response

8.0 6.0 4.0 3.0 2.5 2.0 1.5 1.2 1.0 0.8 0.6 0.4 0.3 0.2 0.1
0

0.4

0.8

1.2

1.6

2

2.4

Quality Factor (bpp)

D
e
te

c
to

r 
R

e
s
p
o
n
s
e

true response

threshold

highest fake response

II - 820

➡ ➠


