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ABSTRACT

The performance of watermarking methods based on lat-
tice quantization schemes can be greatly degraded by simple
amplitude scaling attacks. Scaling the amplitude of pixel
values by relatively small amounts have the potential ef-
fect of moving the watermark vector away from its origi-
nal quantization centroid, thus leading the decoder to incur
in erroneous decisions. In order to overcome this limitation,
Angle Quantization Index Modulation (AQIM) schemes have
been recently introduced. By quantizing the angle of the
watermark vector according to a symbol dependent lattice,
AQIM’s construction leads to an inherent invariance against
amplitude scaling distortions. In this paper, we proceed
with a thorough theoretical analysis of the two-dimensional
version of AQIM, leading to an exact expression for the
bit error probability for simultaneous amplitude scaling and
AWGN attacks. Such theoretical expressions were validated
by comparison with experimental results, which are also in-
cluded in this paper.

1. INTRODUCTION

The rediscovery of Costa’s original results on dirty paper
codes by Chen and Wornell, in 1999, marked the beginning
of a new stage in watermarking research [1, 2]. The idea
of using host-signal state information at the encoder side in
order to guarantee host-interference rejection influenced the
creation of embedding schemes based on the quantization
of the original image, namely quantization index modula-
tion (QIM) methods. In these schemes, the amplitudes of
one single pixel or of a vector of pixels are quantized using
one of a series of quantization lattices, chosen accordingly
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to the symbol to be embedded. While such methods ex-
hibit a significant gain in terms of watermark capacity over
known-host statistics schemes such as the spread-spectrum
(SS), they were shown in turn to be easily defeated by even
the simplest attacks. This limitation of pure quantization
based embedding motivated the creation of hybrid schemes
(e.g., quantized projection, QP [3]) that merged concepts
from both SS and QIM to simultaneously increase robust-
ness and capacity. This accounts for quantizing a diversity
projection of the host signal, in a much similar way to what
is done for spread transform dither modulation (STDM),
proposed earlier by Chen and Wornell. While such differ-
ent amends to Costa’s original idea helped to mitigate the
effects of attacks, at the same time they turned out to be
suboptimal in terms of capacity, lying far away from the
originally targeted achievable rate for the watermark chan-
nel modeled after the AWGN channel.

Even though substantially more elaborate attack strate-
gies have become available, quantization methods have been
frequently remembered by their notorious inability to over-
come amplitude scaling attacks. This limitation is due to
the simple fact that watermark vectors can be easily moved
away from their respective quantization centroids if their
norm is scaled by relatively small amounts. In face of this
situation, some attempts have been made to overcome this
limitation by providing “amplitude synchronization” prior
to decoding, but with arguably little success.

In this paper, we present a novel technique that is shown
by construction to be insensitive to amplitude scaling dis-
tortions, named Angle QIM (AQIM) [4]. Instead of em-
bedding information by quantizing the amplitude of pixel
values, AQIM works by quantizing the angle formed by the
host-signal vector with respect to the origin of a hyperspher-
ical coordinate system. We also present a detailed theoreti-
cal analysis of the two-dimensional version of AQIM, lead-
ing to the derivation of exact expressions for the bit error
probability for simultaneous amplitude scaling and AWGN
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attacks. Finally, we show experimental results that evidence
the validity of the analysis presented herein.

2. ANGLE QUANTIZATION INDEX MODULATION

In communications theory, there are some situations in which
substantial performance improvement can be obtained by
modulating the carrier’s phase instead of amplitude. This
is evidenced by the superior noise performance of FM over
AM techniques in analog communications and by the per-
formance of PSK methods over multipath fading environ-
ments, for example. The relevance of phase modulation
schemes to the data hiding problem under amplitude scal-
ing attacks was first identified by Chen in [5], although this
idea has not been pursued any further in connection with
quantization to date.

Consider a point in the two dimensional Euclidean space.
In QIM, this point would be quantized to the closest centroid
of the lattice defined in (1).

Λ0 = 2∆Z

Λ1 = 2∆Z + ∆
(1)

Instead of using Cartesian coordinates, let this point be rep-
resented by the tuple (r, θ) in polar coordinates. Then, let
the angle θ be quantized to the nearest centroid associated
with message symbol m[i]. These centroids, for a binary
alphabet, are defined by the following lattices

Λ0A = 2∆θZ mod(2π) (2)

Λ1A = 2∆θZ + ∆θ mod(2π) (3)

This modulation scheme, which goes by the name of An-
gle QIM (AQIM), can be easily extended to L-dimensions,
where a point in the hyperplane is represented by its hyper-
spherical coordinates, as we shall see in a moment. In the
following, we exemplify this idea in a simple two-dimensional
case and in Section 2.2 we generalize its construction to the
general L-dimensional case.

2.1. 2-Dimensional case

Let xi ∈ R for i = 1, 2 be two samples taken from an
arbitrary domain of the original image. These samples be-
long to the set Si, where Si ∩ Sj = ∅, ∀i �= j, i, j ∈
{1, 2, · · · , LRm}. The assignment of a pixel to the set Si is
made key dependent and resemble the interleaving process
used in spread-spectrum watermarking. The two samples
x1, x2 may be viewed as the Cartesian coordinates of a point
in a two dimensional plane. This point can be described by
its polar coordinates representation (r, θ). For that end, the
angle r and radius θ are given by (4) and (5) respectively, as

indicated bellow

θ = arctan

(
x2

x1

)
(4)

r =
√

x2
1 + x2

2 (5)

Then, the angle θ is quantized as follows

θQ = Qm[i](θ, ∆θ) =

⌊
θ + m[i]∆θ

2∆θ

⌉
2∆θ + m[i]∆θ (6)

where m[i] ∈ {0, 1} is one of the LRm bits necessary to
represent message m, and ∆θ is the size of the quantiza-
tion step. Note that while the angle is quantized, the radius
coordinate remains unchanged.

Now, converting (r, θQ) back to its Cartesian coordinate
representation yields the new amplitude values for the pixels
in the set Si, i.e. y1 = r cos θQ and y2 = r sin θQ.

2.2. L-Dimension case

Let x be a vector in the L-dimensional hyperplane with
Cartesian coordinates given by (x1, · · · , xL). Then, let x
be represented in hyperspherical coordinates by its radius r
and angle vector θ = (θ1, θ2, · · · , θL−1). These quantities
can be obtained from (x1, · · · , xL) as follows:

θ1 = arctan
x2

x1
(7)

θi = arctan
xi+1(∑i

k=1 x2
k

)1/2
, ∀ i = 2, 3, · · · , L − 1 (8)

r =

(
L∑

k=1

x2
k

)1/2

(9)

Then, the quantization in (6) is applied to the components of
θ = (θ1, · · · , θL−1), where the appropriate lattice is chosen
according to the value of m[i].

Mapping the radius and the quantized angle vector back
to its representation in Cartesian coordinates yields the wa-
termarked pixels, as in the following

y1 = r

L−1∏
k=1

cos θQk (10)

yi = r sin θQi−1

L−1∏
k=i

cos θQk , ∀ i = 2, 3, · · · , L (11)

3. ERROR PROBABILITY UNDER ADDITIVE
WHITE GAUSSIAN NOISE

The invariance of AQIM to amplitude scaling distortions
can be easily verified by inspection. In fact, it has been
previously shown that this is the case [4]. Nevertheless, to
be able to access the performance of AQIM under additive
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noise contamination is a matter of fundamental importance.
The bit error rate (BER) behavior for varying watermark-
to-noise ratios (WNR) provides a baseline for establishing
performance comparisons among different watermark em-
bedding techniques.

3.1. Preliminaries
In the following, the amplitudes of the pixel values of the
host image are assumed to be Gaussian distributed with mean
zero and variance σ2

X , i.e., X ∼ Gaussian(0, σ2
X). Like-

wise, the amplitudes of the noise samples are Gaussian r.v.
with mean zero and variance σ2

N , i.e., N ∼ Gaussian(0, σ2
N ).

We make use of two properties of random vectors which are
widely recognized in communications theory [6]: 1. The
angle θi formed between two random vectors xi and xi+1

whose magnitudes follow a Gaussian distribution is uniform
distributed between (0, 2π), i.e. θi ∼ Unif(0, 2π), 2. The
magnitude r of the sum of two Gaussian random vectors, i.e.
r = ‖xi‖, follows a Central χ2 distribution with L degrees
of freedom.

For the general L dimensional case presented in Section
2.2, it becomes clear from equation (7) that the magnitude
of the host image vector x is not altered by the embedding
procedure, i.e. ‖y‖ = ‖x‖. Keeping in mind the assump-
tions made about fX(x) then r (7) is clearly a Central χ2

random variable with L degrees of freedom. On the other
hand, since θQ is obtained by quantizing θi to one among
2M levels, it results that θQ is a discrete random variable
distributed as follows:

p(θQ = ψ) =
1

2M
δ(ψ − ∆θk) (12)

where ψ ∈ (0, 2π), k ∈ Z, and θθ = π/M .
When the watermarked signal suffers an AWGN attack,

it is not difficult to see that r then follows a non-central χ2

random variable with L degrees of freedom. We will show
this in the next section for the particular case of L = 2.

3.2. 2 Dimensional Case
Let x1 and x2 be arbitrarily chosen among the host image
pixels. Therefore, it is reasonable to assume that xi are inde-
pendent identically distributed (iid) random variables with
a Gaussian marginal distribution X ∼ Gaussian(0, σ2

X).
Then, for the two dimensional AQIM, the tuple of Cartesian
coordinates (x1, x2) locates the point x in R

2. From the
previous section, when L = 2, then the tuple(r, θ) locates
the point x in the Euclidean space using polar coordinates.
After the quantization process, the angle θQ is distributed
as in (12). Fig. 1 shows a component of the watermarked
image. y1 and y2 define a point y in the two dimensional
Euclidian space. The distance from the origin to y is given
by r =

√
y2
1 + y2

2 . Then, for the reasons mentioned earlier,
r follows a Rayleigh distribution, i.e.

fR(r) =
r

σ2
X

e
− r

2

2σ2

X r > 0 (13)

When y suffers an additive noise attack, the quantized an-

Fig. 1. 2 dimension vector representation of the water-
marked signal y and the attacked image z = y + n

gle is deflected and the radius is scaled. A sample of the
received image z = y + n is depicted in Fig. 1. The
polar coordinates for this point are given by the radius v
and angle θ̂. The resulting vector given by the components
z1 = y1 + n1 and z2 = y2 + n2 can be described in po-
lar coordinates yielding the scaled radius v =

√
z2
1 + z2

2

and the disturbed angle θ̂ = arctan z2

z1

. At the receiver
end z1 and z2 are viewed as Gaussian random variables,
z1 ∼ Gaussian(y1, σ

2
N ) and z2 ∼ Gaussian(y2, σ

2
N ).

Then, it can be shown that v =
√

z2
1 + z2

2 is a Rice ran-
dom variable. The joint probability density function of the
perturbed angle θ̂ and the scaled radius v is given by

fV Θ̂(v, θ̂/r, θQ) =

=
v

2πσ2
N

exp

{
2rv cos(θ̂ − θQ) − v2 − r2

2σ2
N

}
(14)

The marginal pdf of θ̂ can be obtained by integrating equa-
tion (14) over the support of V . An error situation occurs
whenever θ̂ falls out of the Voronoi cell R1 associated with
the corresponding centroid in the lattice (2), given by the
quantized angle θQ. Strictly speaking, if θ̂ falls out of its
original Voronoi cell R1 but rather into another cell associ-
ated with the same lattice (2), then this would not cause an
error. However, it is very unlikely that this will in fact occur,
since a very high noise level would be necessary to lead to
this situation. Thus, we will not consider this possibility in
what follows.
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The symmetry and the uniformity of the lattices Λi al-
low us to focus on a specific case when deriving the ex-
pression for the probability of decoding error. Thus, with-
out loss of generality, the probability of a decoding error is
given by

Pe = Pr{θ̂ ∈ R1/m = 0} (15)

or

Pe = Pr

{
|θ̂| > θQ +

∆θ

2

}
(16)

Keeping in mind that θQ is uniformly distributed (12), with-
out lost of generality θQ can be assumed zero, θQ = 0. The
probability of error then becomes

Pe = 1 −

∫ ∞

0

∫ ∞

0

∫ ∆θ/2

−∆θ/2

fR(r)fV Θ̂(v, θ̂/r)dθ̂drdv

(17)
Intuitively speaking, it is not difficult to understand the rea-
son why the probability of error is not affected by a change
in the radius v. This is because the information symbol is
embedded by quantizing the angle θQ according to its cor-
respondent lattice Λi.

4. RESULTS
In order to validate the expression (17) a series of exper-
iments were performed. First a synthetic Gaussian image
was generated and the AQIM method (L = 2, ∆θ = π/M )
was used to embed a message at a rate of 0.5 bits/pixel with
a document-to-watermark ratio (DWR) of 19dB. Then, the
watermarked image was attacked by AWGN with watermark-
to-noise ratios (WNRs) varying from -20dB up to 21dB.
This process was repeated 100 times and the outcomes were
averaged, yielding the blue solid curve in Fig. 2. The same
experiment was conducted with image Lena and the result
is presented as the black dashed curve in Fig. 2. At the same
figure, the “theoretical” curve reflect the result predicted by
equation (16). As one can see from Fig. 2, the results from
the experiments and from the theoretical analysis are very
close, which serve as evidence of the acceptable accuracy
of the proposed analysis.

5. CONCLUSIONS
In this paper we developed a theoretical analysis for the
BER performance of Angle QIM watermarking methods.
An exact expression was derived for the bit error probability
of AQIM under AWGN attacks. This analysis was validated
experimentally, indicating the validity of the derived expres-
sions to predict the BER performance of AQIM over a wide
range of WNR values. Furthermore, AQIM was shown to
be insensitive to amplitude scaling attacks, which makes it
a promising alternative to the well-established QIM meth-
ods. Work is underway to extend the theoretical analysis
to include embedding at L > 2, as well as to account for
distortion compensation (Quantized Angle Dither Modula-
tion). Thus, it is expected that higher dimensional AQIM
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Fig. 2. Theoretical and experimental probability of error
curves

implementations with distortion compensation will lead to
an improvement in performance under AWGN attacks as
well as to significantly higher embedding rates.
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