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ABSTRACT

Quantization index modulation (QIM) watermarking has re-
ceived a great deal of attention ever since the rediscovery
of Costa’s result on codes with host-interference rejecting
properties. While such embedding scheme exhibit consid-
erable improvement in watermark capacity over its earlier
predecessors, (e.g. spread-spectrum), their fragility to even
the simplest attacks soon became apparent. Among such at-
tacks, amplitude scaling has received special attention. In
this paper, we introduce a quantization scheme that is prov-
ably insensitive to amplitude scaling attacks, named Angle
QIM (AQIM). Instead of embedding information by quan-
tizing the amplitude of pixel values, AQIM works by quan-
tizing the angle formed by the host-signal vector with the
origin of a hyperspherical coordinate system. Hence, AQIM’s
invariance to amplitude scaling can be shown by construc-
tion. Experimental results are presented for the bit error rate
performance of AQIM under additive white Gaussian noise
attacks.

1. INTRODUCTION

The rediscovery of Costa’s original results on dirty paper
codes by Chen and Wornell, in 1999, marked the beginning
of a new stage in watermarking research [1, 2]. The idea
of using host-signal state information at the encoder side in
order to guarantee host-interference rejection influenced the
creation of embedding schemes based on the quantization
of the original image, namely quantization index modula-
tion (QIM) methods. In these schemes, the amplitudes of
one single pixel or of a vector of pixels are quantized using
one of a series of quantization lattices, chosen accordingly
to the symbol to be embedded. While such methods ex-
hibit a significant gain in terms of watermark capacity over
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known-host statistics schemes such as the spread-spectrum
(SS), they were shown in turn to be easily defeated by even
the simplest attacks. This limitation of pure quantization
based embedding motivated the creation of hybrid schemes
(e.g., quantized projection, QP [3]) that merged concepts
from both SS and QIM to simultaneously increase robust-
ness and capacity. This accounts for quantizing a diversity
projection of the host signal, in a much similar way to what
is done for spread transform dither modulation (STDM),
proposed earlier by Chen and Wornell. While such differ-
ent amends to Costa’s original idea helped to mitigate the
effects of attacks, at the same time they turned out to be
suboptimal in terms of capacity, lying far away from the
originally targeted achievable rate for the watermark chan-
nel modeled after the AWGN channel.

In this paper, we present a novel technique that is shown
by construction to be insensitive to amplitude scaling, named
Angle QIM (AQIM). Instead of embedding information by
quantizing the amplitude of pixel values, AQIM works by
quantizing the angle formed by the host-signal vector with
respect to the origin of a hyperspherical coordinate system.
We present a detailed description of this method by building
upon a simple example in two dimensions in order to con-
struct angle quantizers in arbitrarily higher dimensions. Fi-
nally, we present experimental results that evidence AQIM’s
bit error performance under additive white Gaussian noise
attacks.

2. PRELIMINARIES

In this paper, we follow the usual watermarking notation,
where: k is a secret key used during the embedding/decoding
process; x are samples taken from the original image, which
can be pixels, DCT coefficients, DWT coefficients, or any
other transformed domain coefficients used for embedding;
m is a message that needs to be transmitted to the receiver
end; w is the watermark to be added to the original image
samples; y is the watermarked image; n represents an ad-
ditive noise source contaminating y and z is the possibly
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attacked watermarked image received at the decoder. Based
on z the decoder attempts to obtain an estimate of the em-
bedded message, m̂.

Additionally, the following definitions are in place: x ∈
R

L is a L-dimensional vector in hyperspace; m is a vector
with dimension RmL chosen from the set of possible mes-
sages, with cardinality 2LRm , where Rm is the code rate.
w ∈ R

L is a vector, and it is added element-by-element to
w to generate y. In order to account for perceptual quality,
i.e. to guarantee that the distortion level lays bellow visual
perception, the norm of w needs to be bounded. For now,
the watermark distortion is defined as

Dw =
1

L
‖w‖2 =

1

L
‖y − x‖2. (1)

By means of this distortion measure, the Document-to-
Watermark Ratio (DWR) is defined as

DWR = 10 log10

σ2
x

Dw
. (2)

where σ2
x is the variance of the original signal.

Additionally, the distortion introduced by the channel
needs to be quantified as well. Let the channel distortion be
defined as

Dc =
1

L
‖n‖2. (3)

In the same fashion, the Watermark-to-Noise Ratio (WNR)
is defined as

WNR = 10 log10

Dw

Dc
. (4)

Known-host state schemes such as QIM use prior knowl-
edge about the host signal state in order to generate a water-
mark vector “in the direction” of x. One simple way to ac-
complish this without resorting to large randomly generated
codebooks is to quantize the host signal with one among
several distinct lattices in the set {Λ0,Λ1, · · · ,ΛM}. The
cardinality of this set is equal to the dimension of the M -ary
symbol alphabet. In addition, there is a direct dependence
between the choice of the lattice Λi and the i-th symbol be-
longing to the message vector m = (m1,m2, . . . , mLRm

).
Having said that, we will restrict our attention to binary al-
phabets, such that the corresponding lattices are given by

Λ0 = 2∆Z

Λ1 = 2∆Z + ∆
(5)

where ∆ is the quantization step chosen to be small enough
in order to ensure perceptual quality. The watermarked sig-
nal is then given by

y = Qm[i](x,∆) = x + w(x,m[i]). (6)

where m[i] is the i-th symbol belonging to the message vec-
tor m = (m1,m2, . . . , mLRm

). The resulting watermark

signal w is then the quantization error w(x,m[i]) = y−x =
Qm[i](x,∆) − x.

At the decoder end, the estimated message symbol m̂[i]
is chosen from the set {0, 1} in a way that minimizes the
distance between the extracted vector z and its respective
centroid, i.e.

m̂[i] = arg min ‖z −Qm[i](z,∆)‖2, m[i] ∈ {0, 1} (7)

2.1. QIM under amplitude scaling attack

Under an amplitude scaling attack the received signal z be-
comes

z = βy (8)

where β is a scalar. As one may notice, this has the effect
of scaling the watermark vector by β in such a way that it
can be eventually moved away from its original quantiza-
tion cell. This leads to a potentially devastating effect on
the watermark decoder, since it might incur in systematic
decoding failure. Obviously, the ideal condition for perfect
reception is that β = 1, in which case there is no attack at
all. Therefore, for β �= 1 the encoder may lose its ability to
correctly estimate the embedded message m̂, depending on
the existing relation among ∆ (the quantization step) and β
(the scaling factor). In fact, the probability Pe of commit-
ting a bit error upon decoding is given by

Pe = 1 − Pr

{
y −

∆

2
< βy ≤ y +

∆

2

}
(9)

where y represents here one single sample of the water-
marked image, which is scaled by β by assumption. As
long as βy is between y − ∆

2 and y + ∆
2 the probability of

error is zero. It is not difficult to see that the expression for
the probability of error is

Pe = Pr

{
|y| >

∆

2(β − 1)

}
(10)

= 2Q

{
∆

2(β − 1)σy

}
(11)

where σ2
y is the variance of the watermarked signal and Q(·)

is the Q-function. From the equation above, the dependence
between Pe and β for QIM becomes evident. Therefore, a
small scale attack can lead to a large probability of error.
We shall see in the next section that this is not the case for
AQIM.

3. ANGLE QUANTIZATION INDEX MODULATION

In communications theory, there are some situations in which
substantial performance improvement can be obtained by
modulating the carrier’s phase instead of amplitude. This
is evidenced by the superior noise performance of FM over
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AM techniques in analog communications and by the per-
formance of PSK methods over multipath fading environ-
ments, for example. The relevance of phase modulation
schemes to the data hiding problem under amplitude scal-
ing attacks was first identified by Chen in [4], although this
idea has not been pursued any further in connection with
quantization to date.

Consider a point in the two dimensional Euclidean space.
In QIM, this point would be quantized to the closest cen-
troid of the lattice defined in 5. Instead of using Cartesian
coordinates, let this point be represented by the tuple (r, θ)
in polar coordinates. Then, let the angle θ be quantized to
the nearest centroid associated with message symbol m[i].
These centroids, for a binary alphabet, are defined by the
following lattices

Λ0A = 2∆θZ mod(2π) (12)

Λ1A = 2∆θZ + ∆θ mod(2π). (13)

This modulation scheme, which goes by the name of An-
gle QIM (AQIM), can be easily extended to L-dimensions,
where a point in the hyperplane is represented by its hyper-
spherical coordinates, as we shall see in a moment. In the
following, we exemplify this idea in a simple two-dimensional
case and in section 3.2 we generalize its construction to the
general L-dimensional case.

3.1. 2-Dimensional case

Let xi ∈ R for i = 1, 2 be two samples taken from an
arbitrary domain of the original image. These samples be-
long to the set Si, where Si ∩ Sj = ∅, ∀i �= j, i, j ∈
{1, 2, · · · , LRm}. The assignment of a pixel to the set Si

is made key dependent and resemble the interleaving pro-
cess used in spread-spectrum watermarking. The two sam-
ples x1, x2 may be viewed as a point in a two dimensional
plane. This point can be described by its polar coordinates
representation (r, θ). For that end, the angle r and radius θ
are given by (14) and (15) respectively, as indicated bellow

θ = arctan

(
x2

x1

)
(14)

r =
√

x2
1 + x2

2 (15)

Then, the angle θ is quantized as follows

θQ = Qm[i](θ, ∆θ) =

⌊
θ + m[i]∆θ

2∆θ

⌋
2∆θ + m[i]∆θ

(16)
where m[i] ∈ {0, 1} is one of the LRm bits necessary to
represent message m, and ∆θ is the size of the quantiza-
tion step. Note that while the angle is quantized, the radius
coordinate remains unchanged.

Now, converting (r, θQ) back to its Cartesian coordinate
representation yields the new amplitude values for the pixels

in the set Si, i.e. y1 = r cos θ and y2 = r sin θ. This process
is illustrated in Figure 1.

3.2. L-Dimension case

Let x be a vector in the L-dimensional hyperplane with
Cartesian coordinates given by (x1, · · · , xL). Then, let x
be represented in hyperspherical coordinates by its radius r
and angle vector θ = (θ1, θ2, · · · , θL−1). These quantities
can be obtained from (x1, · · · , xL) as follows:

θ1 = arctan
x2

x1
(17)

θi = arctan
xi+1(∑i

k=1 x2
k

)1/2
, ∀ i = 2, 3, · · · , L−1. (18)

r =

(
L∑

k=1

x2
k

)1/2

(19)

Then, the quantization in (16) is applied to the components
of θ = (θ1, · · · , θL−1), where the appropriate lattice is cho-
sen according to the value of m[i].

Mapping the radius and the quantized angle vector back
to its representation in Cartesian coordinates yields the wa-
termarked pixels, as in the following

y1 = r
L−1∏
k=1

cos θk (20)

yi = r sin θi−1

L−1∏
k=i

cos θk, ∀ i = 2, 3, · · · , L (21)

3.3. Robustness of AQIM under amplitude scaling at-
tacks

Intuitively speaking, when all the (Cartesian) coordinates
of a vector y are scaled by the same arbitrary factor β, its
angular coordinates θ = (θ1, θ2, · · · , θL−1) in the equiva-
lent hyperspherical representation do not change at all. The
invariance of AQIM to amplitude scaling attacks follows di-
rectly from this observation.

In a more formal way, let y be scaled by an arbitrary
constant β and let the receiver use z = βy in order to obtain
an estimate of the embedded message symbol m̂[i]. Then, to
compute the probability of incurring in a decoding error, we
will assume without loss of generality that m[i] = 0. This
assumption is valid for two reasons: (i) the symbols m[i] are
equally likely; (ii) the quantization lattice is uniform. Since
the angle vector θ̂ is estimated based on z, it follows that

θ̂1 = arctan
z2

z1
(22)

θ̂i = arctan
zi+1(∑i

k=1 z2
k

)1/2
, ∀ i = 2, 3, · · · , L − 1.

(23)
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Fig. 1. Angle quantization index modulation for L = 2.

Noticing that z = βy, (i.e., each element zi = βyi, ∀i =
1, · · · , L) and replacing it into (22), after some algebraic
manipulation we have that

θ̂1 = arctan
y2

y1
(24)

θ̂i = arctan
yi+1(∑i

k=1 y2
k

)1/2
, ∀ i = 2, 3, · · · , L − 1.

(25)

Therefore, for a pure amplitude scaling attack, θ̂ = θQ and

Pe = Pr
{

θ̂ ∈ R1/m = 0
}

= Pr

{
θQ −

∆θ

2
< θ̂ ≤ θQ +

∆θ

2

}

= 1 − Pr

{∣∣∣∣∆θ

2

∣∣∣∣ ≤ 0

}
= 0

In this way, we have shown that the AQIM method is in-
sensitive to amplitude scaling attacks for any β, except of
course for β = 0 when the watermarked image is com-
pletely erased.

3.4. Bit Error Rate for Additive White Gaussian Noise
Channel

In addition to amplitude scaling robustness, AQIM’s perfor-
mance to AWGN attacks was assessed experimentally by
means of Monte Carlo simulations. The family of curves
shown in Figure 3.4 was obtained by arbitrarily varying the

quantization step ∆θ = π/M for M = 16, 32, 64, 128, the
dimensionality of the quantization lattices for L = 2, 4, 8, 16,
32, 64, and WNR = 19, 21, 22dB.
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Fig. 2. Bit error rate performance of AQIM for an additive
white Gaussian noise attack.

4. CONCLUSIONS

In this paper a new QIM scheme is presented, which is prov-
ably insensitive to amplitude scaling attacks. It is shown
that AQIM is robust against any amplitude scaling param-
eter, except possibly for β �= 0. This robustness problem
was the main drawback of classical QIM based modulation,
where even small scaling parameters could severely com-
promise correct message decoding. In addition to ampli-
tude scaling robustness, the AQIM presented a performance
under AWGN attack comparable to classical QIM. Work is
underway to provide a rigorous analytical characterization
of AQIM, including expressions and/or bounds for symbol
error probability in L-dimensions.
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