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ABSTRACT

The dominant orientation at any point � in an image is the
direction from � in which there is the least gray-level vari-
ance. It is often defined by using gradient estimates, but

may be extended to employ neighbourhood operators that

provide some degree of phase invariance. However, the ap-

proach to estimating the dominant orientation at � depends
on the scale or size of the (usually) non-trivial neighbour-

hood being considered. Multiscale PCA-based orientation

estimation techniques involve computationally-heavy solv-

ing of eigensystems at each scale and location. In contrast,

we propose two methods which use a measure of aniso-

tropy to select or weight orientations respectively at differ-

ent scales in order to provide a single estimate of orientation

at any given point. This is believed to be closer to human

perception of contour direction. In this paper, results are

presented for two simple orientation estimation techniques

against comparisonswith multiscale PCA estimation for hu-

man perceptual boundaries.

1. INTRODUCTION

Estimates of local orientation in images play a very im-

portant role in many computer vision tasks such as feature

detection, image denoising, contour extraction, image seg-

mentation and even high-level tasks such as object recog-

nition. Local orientation may be estimated from the vector

fields obtained by applying differential operators, edge de-

tectors [1] and steerable filters [2] to the luminance channel

of a colour image.

Orientation estimation is particularly important for the

extraction of contour or region boundaries for image seg-

mentation. Although in signal processing, the dominant ori-

entation is usually dependent on the size or scale of a given

neighbourhood, human subjects perceive contour boundaries

and their orientations at the appropriate scale for segmenta-

tion. This indicates that a scale selection or a scale weight-

ing process is involved in the human perception of orien-
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tation, especially for boundaries. Perona [3] applied aniso-

tropic diffusion to orientation maps. Feng and Milanfar [4]

used PCA to obtain the dominant orientation at each scale

and weighted these with an eigenvalue-based measure of

orientation dominance. This yields a single orientation es-

timate for each location. Solving eigensystems of gradient

neighbourhoods for each location and scale adds a compu-

tational overhead and the particular measure of orientation

dominance is limited by the evaluation of gradient energy in

only two orthogonal orientations, i.e. the method assumes a

maximum of two orthogonal structures at each location.

In real imagery, local neighbourhoods are not restricted

to edges or ridges but may also contain composite struc-

tures such as corners and junctions. Aach et al. [5] ex-

tended the PCA-based single-scale orientation estimation

techniques by decomposing the eigenvectors of an extended

gradient-based tensor into the orientations of the component

structures, allowing the estimation of multiple orientations

at each location. We adopt a different approach by increas-

ing the orientation-selectivity of our filters such that the in-

terference from structures at different orientations is min-

imised, thereby avoiding the need to solve eigensystems at

each scale.

In Section 2, we describe a steerable pyramid for de-

composing an image into scale and orientation channels. In

Section 3, we propose the novel use of an anisotropy mea-

sure for two techniques to select or weight orientations at

different scales. An adaptive angle-wrapping step that en-

ables accurate weighted averaging of orientations is given

towards the end of this section. We provide experimen-

tal results of our two different orientation estimation tech-

niques in Section 4 and compare them to Multiscale Prin-

cipal Component Analysis technique for the orientation es-

timation technique of Feng and Milanfar [4]. We conclude

with a summary in Section 5.

2. ORIENTATION ESTIMATION FROMA
STEERABLE PYRAMID

Most orientation estimation techniques are based on the anal-

ysis of gray-level intensity gradients, which can be performed
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by differential operators or spatial filtering. Differential op-

erators and orthogonal spatial filters typically estimate gra-

dients in only two orientations. Filter banks employing fil-

ters at more than two orientations possess higher orientation

selectivity and can better resolve the orientation of struc-

tures with reduced interference from structures at other ori-

entations. The orientation selectivity and scale selectivity

characteristics of Gabor filters cannot be as easily tuned as

other Fourier-domain polar separable filters. We use the

complex steerable pyramid of Bharath and Ng [6] to obtain

energy responses at multiple orientations and scales that are

quasi-invariant to the phase of image structures, i.e. edges,

ridges and anything in-between.

The filters are specified in the Fourier domain by polar sep-

arable functions, � �� � � 	 �  , which allow the angular (orien-
tation) selectivity, � � � �  , to be tuned independently of the
radial (scale) selectivity, � � � �  , where � and � are the scale
and orientation of the desired filter respectively

� �� � � 	 �  � � � � �  � � � �  (1)

The angular selectivity of the filters is defined with third

power cosine functions that provide a flat power (sum of

squares) response across all orientations and higher selec-

tivity compared to � � � orientated differential operators
and spatial filters

� � � �  � � ! " $ � � � �  ) + � . / � � � �  (2)

where ) + � . / � �  is the unit rectangular function
) + � . / � �  � 5 7 	 if 8 � 8 ; / <= 	 otherwise (3)

The radial selectivity of the filters control the behaviour,

particularly the stability, of their responses across scales and

an appropriate function is important for comparing filter re-

sponses across scales. We use Erlang functions [7] of order> � @ and scale � � = B C
� � � �  � F � +> I J � J + K � M

(4)

The filter kernels in the spatial domain, N �� � � 	 �  , are ob-
tained by the inverse discrete Fourier transformof � � � � � 	 �  .
We use the same Butterworth lowpass filters as Bharath and

Ng [6] prior to decimating the image by half in each axis and

using the result as input to the next level of the pyramid.

3. ANISOTROPY AND MULTISCALE
ORIENTATION DOMINANCE

The orientation estimates obtained from differential opera-

tors and spatial filters are dependent on the scale of the cho-

sen neighbourhood. A scale selection process is required

to obtain the orientation estimate that is adapted to the a

priori unknown scale of a structure at a particular location.
In order to detect the “intrinsic” scale of structures, Linde-

berg [8] searched for extrema in normalised filter responses

across scales. Such a criteria based on absolute filter re-

sponses is unsuitable for orientation estimation as it does

not consider the dominance of the estimated orientationwith

respect to the other orientations. Feng and Milanfar [4] ap-

plied PCA to the components of the gradient field in a lo-

cal neighbourhood of an image and used the difference in

the two obtained eigenvalues, normalised by the sum of the

eigenvalues, as a dimensionless measure of the dominance

of the estimated orientation at each scale. The eigenvalues

provide a measure of the signal energy along and perpendic-

ular to the estimated orientation. The technique operates on

the assumption that a maximum of two orientated structures

may simultaneously exist in a local neighbourhood and that

the two structures are perpendicular to each other, which

may not always be the case.

In neuroscience, the orientation selective neurons of mam-

malian primary visual cortex may be characterised by mea-

suring the output of the neuron during multiple presenta-

tions of oriented stimuli at many orientations. Ringach [9]

proposed a measure of orientation dominance that weights

vectors in each of the presented orientation by the neuronal

response, performs a vector addition to find the overall pre-

ferred orientation of the cell and normalises the result by the

sum of all the responses so that the result is independent of

the overall sensitivity of the neuron and always lie between

zero and one. Given the energy response 8 R T V XY � [ 	 >  8 	 _ �= B B c � 7 of the c
complex filters at location � [ 	 >  and

level d of the complex steerable pyramid, we use the orien-
tation dominance measure

e T V X � [ 	 >  � g gggggg

h i K jY k l 8 R T V XY � [ 	 >  8 + n < o p
q r F h i K jY k l 8 R T V XY � [ 	 >  8 < I tu ggggggg

(5)

where we added the conditioning constant, q � 7 B w C x
of

the maximum gray-level intensity value in the image.

The multiscale estimated orientation at a particular image

location can be chosen as the estimated orientation at the

scale with the highest orientation dominance. However, the

number of scales or levels in the pyramid is usually lim-

ited by computational power and the sampling of the scale

parameter is usually coarse. A better multiscale estima-

tion technique may be to weight the estimated orientations

at each scale with their respective orientation dominance.

However, the weighting of orientations require special care

in the pre-processing of the orientations in addition to angle-

wrapping.

Orientation is usually represented by either a vector y or
an angle � to a reference axis such as the horizontal. Both
representations do not capture the property of orientation to

II - 786

➡ ➡



flow in either direction to the vector, i.e. � and � � , or to
rotations of the angle by � , i.e. � � � � where � � 
 . Fol-
lowing the example in Fig. 1, given two orientations � and�
which have been wrapped to the range � � � � � � , comput-
ing an average or a vector addition would yield an incorrect

result, � , that is close to perpendicular to the desired result
� . Rather than angle �

, angle � should be averaged with
angle � . Moreover, averaging orientation or adding vectors
that are more than

� �
radians apart may yield an incorrect

result because of the discontinuity at either extremes of the

range which are supposed to wrap around.

θ

α

β

ω

φ

Fig. 1. Averaging or weighting two orientations.

We propose the following algorithm for adaptivelywrap-

ping the orientations prior to averaging or vector addition to

address the problem. Given a set of � orientations � � � � � � � � �� � � � �  ,
1. Choose an arbitrary orientation, e.g. � � , as the refer-
ence orientation � " .

2. Compute the set of the number of rotations by � ,� � � � � � � � � � � � � �  such that no orientation is greater
than � apart from the reference orientation � " , i.e.# % & ( � + � � + � � � " / 1 3 � �

for all 4 5 6 5 � .
3. If any of the compensated orientation � + � � + � is ex-
actly � apart from the reference orientation � " , choose
another reference orientation and go to Step 2.

4. Otherwise, perform simple or weighted averaging or

vector addition with the compensated orientations.

For each location in the image, we weight the adaptively

wrapped estimated orientations, � ; = ?@ ( � � � / , at each of the B
scales of the complex steerable pyramid with their measure

of orientation dominance (Eqn. (5)),

C E F G # I J K M 6 ( � � � / 3
P R

= S �
T ; = ? ( � � � / � ; = ?@ ( � � � /P R

= S �
T ; = ? ( � � � /

(6)

4. EXPERIMENTS

We applied both techniques of estimating multiscale ori-

entation, comprising of scale selection and scale weight-

ing by orientation dominance respectively, to real images

where the complexity of structures would tax their perfor-

mance. We used four orientations and four scales for the

complex steerable pyramid and compared the results of the

two techniques with our implementation of Feng and Mi-

lanfar’s multiscale PCA technique [4].

The Berkeley Segmentation Dataset [10] contains hu-

man hand-segmentations of a subset of the Corel image data-

base containing natural images. We converted the region in-

formation of the dataset into contours and estimated the ori-

entation along each contour with Savitsky-Golay [11] filters

of width 5. For each location in the image, the ground-truth

orientations are adaptively wrapped and averaged across the

available contour orientations (obtained from multiple hu-

man subjects) at that location. We selected images, shown

in Fig. 2, where the contours could be obtained from the

gray-scale edges instead of higher-order features such as

texture boundaries.

(a) 118035 (b) 161062

(c) 163014 (d) 198023

Fig. 2. Test images from the Corel image database with
hand segmentation ground-truths from the Berkeley Seg-

mentation Dataset [10].

The multiscale orientation estimation results are given

both in terms of mean error and root mean square error

in Table 1. The techniques of scale selection and scale

weighting from the processed features obtained by a com-

plex steerable pyramid perform better than Feng and Milan-

far’s technique of applying PCA to gradient fields obtained

by differential operators as used in their paper. We can also

observe that the scale weighting technique generally per-
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Image Multiscale Scale Scale
ID PCA Selection Weighting
118035 17.84 � (27.68 � ) 15.53 � (27.24 � ) 15.24 � (24.48 � )
161062 23.99 � (33.75 � ) 22.04 � (32.95 � ) 21.73 � (32.00 � )
163014 26.46 � (36.39 � ) 14.17 � (23.04 � ) 14.67 � (23.29 � )
198023 25.52 � (35.94 � ) 17.91 � (28.32 � ) 18.33 � (27.43 � )

Table 1. Average orientation estimation error (root mean
square error in brackets) in degrees compared to human

ground truth from the Berkeley Natural Image Database.

Each is computed over thousands of pixels.

forms better than scale selection except in the average er-

ror in the third and fourth images. The third image contain

more complex textures than the others. The r.m.s. error in

the fourth image is better for scale weighting indicating a

smaller frequency of extreme errors.

5. CONCLUSION

Orientation estimation by approaches based on gradient in-

formation are dependent on the scale or size of the image

neighbourhoods being considered, e.g. filter pyramids pro-

vide different orientation estimates at each level for real im-

ages. A single scale-independent estimate of orientation is

often desirable for tasks such as contour extraction and im-

age segmentation, similar to how humans perceive the ori-

entation of contours. Perona [3] applied anisotropic diffu-

sion and Feng and Milanfar [4] used orientation dominance

measures obtained from a PCA analysis of differential gra-

dients in each neighbourhood in an image to weight orienta-

tion estimates obtained at each level from the PCA analysis.

We propose the use of a complex steerable pyramid that pro-

vide orientation channels with higher orientation selectivity

and a simpler measure of orientation dominance that can

be applied directly to the output of the complex steerable

pyramid. Furthermore, the proposed measure of orientation

dominance does not make any assumption about the num-

ber of structures in the neighbourhood, nor their orthogo-

nality as in the case of [4]. We also proposed an algorithm

for adaptively wrapping orientations to prevent the wrap-

around of orientations from inducing errors in orientation

averaging, weighting and vector addition.

In the future, we plan to use a complex steerable pyra-

mid with more orientation channels and develop other mea-

sures of orientation dominance that can better deal with com-

plex image structures such as corners and junctions. We also

plan to explore the possibility of reformulating the multi-

scale orientation estimation and orientation dominancemea-

sures under a more formal framework of scale steering.
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