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ABSTRACT
In this paper, we propose using orientation difference length
distribution (ODLD) to represent a 3D view of each object
with free form surface. ODLD has a number of advantages
over the shape distribution. A comparative study of ODLD
and the shape distribution has shown that the former is sig-
nificantly more accurate for 3D free form surface matching
than the latter.

1. INTRODUCTION

Free form surface matching is a fundamental problem in the
machine vision and image processing community. Recently,
since a large number of 3D images have been put onto the
World Wide Web with different purposes, it is realistic to
search 3D images for the construction of 3D models, in-
stead of capturing 3D images directly [1, 4]. Inherently, 3D
free form surface matching is challenging due to the fol-
lowing two reasons: (1) 3D images on the web are beyond
prediction in the sense of genre, quality, or even format; (2)
full 3D model is often not available. Finding an accurate
partially overlapping 3D image captured at different view-
points with various quantities of overlapping and occlusion
and appearance and disappearance of points remain an open
problem. As a result, a powerful scheme for the representa-
tion of each view of an object is required.

The existing 3D free form surface matching methods can
be broadly classified into two categories: local feature based
methods and global feature based methods. While local
features can be spin images [2] or surface signature [7],
the global features can be shape distribution [4], harmonic
shape representation [5] or skeleton [6], and the like. The
former first extracts local features attached to each point,
then matches these features and thus, establishes point cor-
respondences between different images. The latter first ex-
tracts an overall object appearance representation from each
image, then matches the appearance representation. While
the former is computationally expensive and often more ac-
curate, the latter is computationally efficient and often less
accurate.

2. ORIENTATION DIFFERENCE LENGTH
DISTRIBUTION

Fig. 1. The real range images used. From top to bottom, from
left to right: bunny (8 views, 20◦), tubby (7 views, 20◦), cow
(10 views, 10◦, 20◦, or 30◦), red dinosaur (5 views, 36◦), bird
(6 views, 20◦), angel (3 views, 20◦), duck (2 views, 20◦), frog
(5 views, 20◦), valve (2 views, 10◦), dinosaur (2 views, 35◦),
lobster (8 views, 20◦), and buddha (7 views, 20◦). Here, x◦

denotes that the object undergoes a motion with a rotation angle
of x◦ around an unknown rotation axis in 3D space.

Since global feature based methods are efficient and they
can incorporate human-computer interaction, they are at-
tractive not only for 3D object recognition, but also for 3D
image search through the World Wide Web. While the shape
distribution [4] represents a randomly selected interpoint
distance distribution, in this paper, we propose using orient-
ation difference length distribution to represent the overall
appearance for each view of an object. The details for the
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construction of orientation difference length distribution are
described as follows.

A 3D image is a rendering of a set of 3D structured data
points and represents a free form surface of an object. Such
an image is called a range image in the machine vision com-
munity. In each raster range image file, for any valid point
p, within its eight nearest neighbours, if there are more than
two valid points pn1, pn2, · · ·, pnr (r ≤ 8), then we call
this point p a non-boundary point. Otherwise, this point p
is called a boundary point. For a non-boundary point p, a
plane can be used to fit its valid neighbouring points and the
surface normalN at this point p can then be estimated as the
normal of that plane. The surface normal N at point p is the
eigenvector of matrix A=

∑
i(pni − p̄n)(pni − p̄n)T that

correspond to the smallest eigenvalue of matrix A where
p̄n is the centroid of p, pn1, pn2, · · ·, pnr , superscript T
denotes the transpose of a point vector. Clearly, the surface
normal is independent of translation vector of the viewpoint
from which the image was captured.

Then we compute the orientation difference of neigh-
bouring points. For point p, its orientation difference is
computed as: ODp = N − N̄, where N̄ is the normal-
ized mean of the surface normals at p, pn1, pn2, · · ·, pnr ,
respectively. Then we compute the Euclidean norm of ori-
entation difference vector: dp = ||ODp||. Clearly, this
orientation difference length is independent of the rotation
of the viewpoint. Since both N and N̄ are of unit length,
dp = ||N − N̄|| ≤ ||N|| + ||N̄|| = 2. This is an advantage
of orientation difference length, since it provides a good op-
portunity to determine a fixed bin size for the histogram of
orientation difference length.

Finally, we compute the histogram of orientation differ-
ence length. As long as the scale m of the histogram has
been given, then the fixed bin size s can be computed as:
s = 2/m. Once the bin size has been determined, the con-
struction of histogram with regard to orientation difference
length is straightforward. For the sake of facilitating the
matching of different histograms, we normalise the histo-
gram Hi = {hik|k = 1, 2, · · ·m} through dividing each
frequency by the number of points used for the construction
of the histogram hik = hik∑

k
hik

. Examples of the histo-

grams are presented in Figure 2.

3. ADVANTAGES OF ORIENTATION DIFFERENCE
LENGTH DISTRIBUTION

The orientation difference magnitude describes the change
in the turning angle as we move along the curve that is the
intersection between the free form surface and the plane
containing N̄ and N and thus is powerful in representing the
overall appearance of objects as demonstrated in the next
section. Moreover, it has the following three advantages:
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Fig. 2. The histogram constructed. Top two for two views of
bunny. Bottom two for two views of cow. m=256.

• The ODLD histogram is independent of rigid body
transformation (rotation and translation), scale and ro-
bust to noise. These properties are critical for any
global feature extraction and matching [4].

• It facilitates the determination of the fixed bin size for
the construction of histogram. Since the length of ori-
entation difference is at most 2, thus, as long as the
scale of the histogram has been given, then the fixed
bin size can be easily decided. This determination
of the fixed bin size has nothing to do with any spe-
cific images of objects. This is in contrast with the
shape distribution [4] that applies mean normalisation
to eliminate the effect of object scale on the final classi-
fication accuracy. While the mean of the interpoint dis-
tances is unpredictable, depending on the actual size of
image and the specific random point selection scheme
at each trial of computation, it either is difficult to de-
termine the fixed bin size or leads to variable scales
of histogram. Such a kind of characteristics makes the
algorithm less reliable.

N

p p
N

Fig. 3. Planar and spherical objects

• It is easy to examine that special objects have special
ODLD (Fig. 3). For example, since all the points on
the same planar patch have the same orientation, then
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the length of orientation difference will always be zero
and thus, occupies the same bin on the histogram. For
a valid point on a sphere, if its eight nearest neighbour-
ing points are all valid, then the length of orientation
difference is also zero and thus, occupies the same bin
on the histogram. Thus, the objects with special sur-
faces have special ODLD. However, their shape distri-
bution may be unpredictable, as discussed above. As
a result, the shape distribution does not facilitate the
matching of regular surfaces, while the ODLD does.

4. MATCHING OF HISTOGRAMS

Once the histogram Hi = {hik|k = 1, 2, · · ·m} has been
constructed, it is critical to devise a good measurement
for the matching of different histograms. For a comparat-
ive study, we implemented the following commonly-used
measurements:

• Bhattacharyya divergence:

divB(Hi,Hj) = 1 −
∑

k

√
hikhjk

• Kullback-Leibler divergence:

divKL(Hi,Hj) =
∑

k

(hik − hjk) log(hik/hjk)

• χ2 divergence: divχ2(Hi,Hj) =
∑

k
(hik−hjk)2

hik+hjk
.

For all these measurements, if none of any orientation
difference length falls into a bin, then the occurrence fre-
quency of that bin is zero (Fig. 2). This describes such
a scenario that a certain orientation difference length does
not occur. Obviously, such a situation may dominate the
final free form surface matching. Thus, we propose intro-
ducing virtual training examples for learning [3] so that a
more accurate histogram can be constructed. Since we have
no knowledge to believe that one frequency is higher than
another, we shift all frequencies up about a small positive
real number ε: Hi = {hik ← hik + ε|ε > 0}. The ra-
tionale behind this operation is that we model explicitly the
occlusion and appearance and disappearance of points with
a small probability. Points in the image then reinforce this
small probability. Thus, our new method explicitly mod-
els occluded and appearing and disappearing points with a
small probability, instead of zero. Finally, we normalise the
histogram again: hik = hik∑

k
hik

. In the experiments de-

scribed below, we let ε = 0.0015.

5. EXPERIMENTAL RESULTS

In order to provide a better understanding of the perform-
ance of the proposed orientation difference length distri-

bution (ODLD) algorithm, the shape distribution (SD) al-
gorithm [4] was also implemented and applied to the same
data set without and with shifting the histograms (SODLD
and SSD). For the performance measurement, we ran a
series of “leave one out” tests. In each test, we compared
the ODLD with and without shifting the histogram of each
view of each object in the database against all others. As
long as it can best match one of the views for that object,
we regard the algorithm correctly classifying this image.

All the images (Figure 1) used in this paper were down-
loaded from a publicly available database maintained by
the Signal Analysis and Machine Perception Laboratory at
Ohio State University. The images were captured using a
Minolta vivid 700 range camera and are of size 200 by
200. Different objects are represented by different views.
The views of objects undergo motions with a rotation angle
around an unknown rotation axis in 3D space respectively.
The rotation angles are generally 10◦, 20◦, 30◦, 35◦, or 36◦.
This is the case that on the world wide web, no one has reg-
ulated what motion the object should undergo. Thus, our
experiments represent the actual imaging condition for free
form surface matching and the actual situation for the im-
ages on the World Wide Web. The experimental results are
presented in Tables 1, 2, and 3.

Table 1. The average time in seconds on Pentium III com-
puter for the construction of ODLD for different classes of
objects with different sizes m of histogram.

Object Time (s)
m=128 m=256 m=512

Bunny 20.5 24.1 30.7
Tubby 15.8 17.4 22.5
Cow 4.9 5.7 7.2

Red Dinosaur 2.6 3.2 4.0
Bird 24.0 27.3 33.6
Angel 4.7 5.0 6.3
Duck 27.5 33.5 43.0
Frog 13.0 15.8 20.6
Valve 19.5 23.5 29.5

Dinosaur 3.0 3.0 4.5
Lobster 8.7 9.5 13.0
Buddha 3.0 3.3 4.14

From Table 1, it can be seen that the larger the histogram,
the longer time its construction takes. In general, the more
points a view has, the more time it needs to construct the
ODLD histogram. This is expected. The shape distribu-
tion for any view of an object generally takes less than one
second on a Pentium III computer. Note that ODLD can be
constructed offline and needs to be constructed only once.
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Table 2. The average classification accuracy of different
global features using different measurements over different
sizes m of histogram for 6 classes of objects with 39 images.

m Measure ODLD SODLD SD SSD
Bhattacharyya 87.2 87.2 11.1 68.2

128 KL 86.8 87.2 68.2 68.2
χ2 87.2 92.7 68.2 68.2

Bhattacharyya 96.6 96.6 11.1 65.1
256 KL 94.4 96.6 65.1 65.1

χ2 94.4 100.0 65.1 65.1
Bhattacharyya 96.6 96.6 13.8 63.4

512 KL 94.4 96.6 63.4 63.4
χ2 94.4 96.6 63.4 63.4

Table 3. The average classification accuracy of different
global features using different measurements over different
sizes m of histogram for 12 classes of objects with 65 im-
ages.

m Measure ODLD SODLD SD SSD
Bhattacharyya 63.3 63.3 5.5 42.7

128 KL 60.9 63.3 41.5 42.7
χ2 63.3 67.3 40.3 42.7

Bhattacharyya 69.7 69.7 7.2 37.2
256 KL 65.8 69.7 38.3 41.4

χ2 65.8 69.7 38.3 36.2
Bhattacharyya 70.9 69.7 4.4 39.5

512 KL 66.9 69.7 35.7 39.5
χ2 69.7 69.7 38.5 39.5

Thus, it can still satisfy the requirements of real time applic-
ations, such as 3D image internet search.

6. EXPERIMENTAL RESULT ANALYSIS AND
CONCLUSION

In this paper, a powerful scheme for the representation of
each view of an object has been proposed and validated.
In addition, we have made the following observations from
Tables 2 and 3:

• The ODLD produces a significantly better result than
the shape distribution. In addition, while the Bhat-
tacharyya divergence fails to match the shape distribu-
tion for different images, it produces very good results
for the matching of ODLD without shifting histogram.
This shows that ODLD is more expressive for the rep-

resentation of objects than the shape distribution. This
is because ODLD extracts information from all points,
while the shape distribution extracts interpoint distance
information of a limited number of randomly selected
point pairs (10,000 in this paper).

• The shifted ODLD (SODLD) generally improves the
classification accuracy relative to that without shift-
ing. The shifting of histograms clearly improves the
classification accuracy for the shape distribution based
matching, especially when m = 512. Thus, the expli-
cit model of occlusion and appearance and disappear-
ance of points is successful.

• The fewer candidate images used for matching, the
higher the classification accuracy. This is expected,
since a large number of candidate images render it dif-
ficult to distinguish correct matches from false ones.

• The size, m=256, of histogram provides a good com-
promise between the computation of histogram and its
resulting classification accuracy.

In practice, it is useful to combine different algorithms
where some algorithms are used to roughly match free form
surfaces and the others are used to refine the matching res-
ults. Also, here we just employ ODLD for free form sur-
face matching. In practice, we can use other information
like text, 2D sketching, 3D sketching [1], or 2D project-
ive images for matching. As a result, the free form surface
matching accuracy is expected to be improved.
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