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ABSTRACT

We describe a semi-automated approach for designing morpho-
logical operators to detect image structures. We automatically
combine morphological primitives from a pool to generate an enu-
merable family of complex morphological operators spanning a
Receiver Operating Curve (ROC). Domain knowledge can be en-
coded by biasing the pool with primitives; the system subsequently
automatically selects and combines operators based on the joint
statistics of training data. The major advantages are that the de-
signer can focus on constructing simple operators, yet is able to
rapidly combine them to yield more powerful, system-specific so-
lutions, whose operating point can easily be changed. We illustrate
the approach using Birth and Death processes and associated op-
erators. Examples of video text detection are presented.

1. INTRODUCTION

Reliable detection of pixels corresponding to man-made structures
is of cardinal importance in computer vision. Examples of partic-
ular industry interest are billboards in broadcast video, inventory
numbers on shipping containers, license plates on vehicles, and
symbols on legacy CAD images.

While morphology yields excellent detection, these systems
require complex, handcrafted design, and face major difficulties
with controlling the operating point[1]. We present an approach to
morphological pixel detection that addresses these problems. The
approach reflects our experience with morphological operators: a
designer usually has no problem producing many simple operators
that each plausibly matches specific image shapes. Humans, how-
ever, fail at appropriately combining different operators, especially
in noise; or given a system, weighing different operators to select
the operating point.

In our approach the prior domain knowledge about basic shapes
and marginal statistics can be encoded in the form of many partial
morphological solutions, handcrafted or selected from a generic
primitive library. However, complex interactions between prim-
itives are automatically extracted from training data to optimally
combine the operators. The design process is practical since it is
deterministic and requires at most two passes through the training
set. It yields a set of solutions that define a Receiver Operating
Curve, allowing for an operating point to be selected without diffi-
culty. Finally, since the primitive operators are simple and generic,
it becomes feasible to have a portable design approach suited to
many applications.

We compare our approach to other semi-automatic morpho-
logical design methods. An extensive review of binary morpho-
logical design by Dougherty[7] is recommended. We distinguish
three main groups. The formal methods define grammars suited to
scene descriptions, and attempt to derive operators directly from

a generative scene description. For example, Joo[6] generates the
morphological solution using a predicate calculus solver. These
approaches hold out the attraction of generating provably optimal
operators with no intervention. Unfortunately, real vision effects
such as occlusion, shadowing and noise are too complex for cur-
rent approaches. These approaches fail to capture the probabilistic
uncertainties of real applications, and usually cannot be parame-
terized using example images.

The second group depend on generic genetic and learning al-
gorithms to search operator space e.g. [2, 3, 4]. The computational
complexity is much higher than the method proposed here. These
methods further force on the designer the non-transparent prob-
lem of encoding prior domain information in the form of genomic
fitness functions, or neural architectures. Solutions cannot easily
be modified to achieve a range of operating points (the approach
in [5] offers only an approximate solution by combining the false
alarm rate and probability of detection in a fitness function).

Our method falls into the third group. These decompose some
operators, and use training data to select between operators. The
major compromise we make is to restrict our tools for combining
simple operators to be non-parametrized set operations (union, in-
tersection and complement). The combinations are automatically
constructed from a large representative training set. This restric-
tion in practice limits our approach to detection and classification
problems. Our method is less ambitious than the full formal ap-
proaches in the sense of not yielding full morphological operator
decompositions. However, using a subset of the morphological
algebra yields significant benefits: hand-designed morphological
solutions can be integrated into the overall solution, yet operating
points along the ROC can easily be changed, and the final solu-
tion can be presented in human understandable form as a Boolean
expression. Our method does allow for the production of non-
increasing operators. It is also robust since the design is based on
a representative sample of images and noise, rather than a model.

In the remainder of the paper for simplicity we consider binary
image morphology, where the image and the indicator set are iden-
tified. We note that we perform grayscale processing by quantizing
the image using a Gray or level code, and processing multiple im-
age bitplanes simultaneously.

2. MORPHOLOGICAL PROCESSING

Morphology is defined on a set E with closed addition operator
+ : E × E → E. The core primitives are dilation ⊕ and erosion
� of a subset A by a subset (structuring element) B:

A ⊕ B = {a + b|a ∈ A} = ∪b∈BAb (1)

A � B = {a|a + b ∈ A} = ∩b∈BA−b (2)
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More complex operators are constructed by combining primitives
using set operations (∩,∪,c). In image processing, A represents an
input image, while the other sets are called structuring elements.
The set operations of a morphological operator can be considered
parameterized on a structuring element, or not. For example, the
hit-and-miss operator on A by structuring elements J and K, is

A ⊗ (J, K) = (A � J) ∩ (Ac � K) (3)

Here the component operators (A� J) and (Ac �K) are consid-
ered parameterized (henceforth called templates), and the connect-
ing intersection operator non-parameterized (henceforth referred
to as the feature logic. This distinction formalizes that typical mor-
phological operator design involves matching simple structuring
elements to desired features (templates), and deriving complete so-
lutions by using Boolean logic to represent high-level constraints
across these features.

While yielding excellent performance, morphological systems
are notoriously hard to design, since the operators are not differ-
entiable and practical systems require combining operators in long
chains. For example, a designer can easily produce a template T1

that matches letter positions on a license plate, while a second tem-
plate T2 matches the plate outline. Both templates can detect the
license plate under ideal circumstances, but in noisy practical sce-
narios their performances differ markedly. For example, license
plate boundaries frequently merge with the background under IR
illumination, while the letters remain visible. To build a system
using these templates, the designer can use any one of sixteen pos-
sible binary functions including the following:

T1(x), T2(x), T1(x) ∩ T2(x), T1(x) ∪ T2(x), ¯T1(x) ∩ T2(x)

In practice, the optimal choice may depend on accuracy require-
ments imposed by law and differ between deployments.

3. DESIGN APPROACH

The design process is shown in Figure 1. Simple templates are
used as a library. Test images are processed with each template,
yielding a set of images where each pixel is the output of an tem-
plate centered on that pixel in the input image. The large pool is
pruned to maximize divergence between pixels in ROI and pixels
not in each ROI, as discussed below. The remaining templates are
combined using Neyman-Pearson design to yield a parameterized
set of Boolean expressions (B1, B2, B3..) of the simple templates,
and which span the ROC. To change the operating point, the clos-
est Boolean combination is used.

3.1. Pool Pruning and Feature Logic Design

In practice, the number of templates that can be combined by any
classifier training procedure is limited. Using simple generic oper-
ators, vast numbers of templates can result which even video data
cannot parameterize without overfitting. We therefore perform a
two-stage pass through the data, first pruning the template pool,
then optimizing the combination.

The discrimination value of templates can be estimated only
when considered in pairs or larger combinations. Such feature se-
lection for larger combinations is extremely expensive (cf.[8]). In
this application we use a simple pairwise procedure based on the
K-L divergence being a rough proxy of the area under the ROC
curve. Consider first pairs of templates indexed by i. The symmet-
ric Kullback-Leibler distance of each feature pair i from the rest

of the feature pairs j, j �= i, averaged over all classes, is the selec-
tion criterion. For every unique template pair (vi1 , vi2) i1, i2 =
1, 2, . . . N, i1 �= i2, a histogram pc

i [k] on the training data for ev-
ery target class c, c = 1, 2, . . . M is generated. The exclusion
probability distribution pc∗

i [k] for every class c for each feature
pair i is first calculated

pc∗
i [k] =

⎡
⎣

N C2∑
j �=c

pj
i [k]P(j)

⎤
⎦ /

⎡
⎣

N C2∑
j �=c

P(j)

⎤
⎦ (4)

The average distance between the per-feature true and false class
problem across all classes is then calculated:

D∗
i =

∑
c,k

[pc
i [k] log(pc

i [k]/pc∗
i [k]) + pc∗

i [k] log(pc
i [k]/pc∗

i [k])]

(5)
The template pairs are ranked based on this divergence, and as
many of the top ranked templates as allowed by system resources,
are selected for integration.

The next step requires optimal combination of morphologi-
cal template outputs, and automatically providing Boolean expres-
sions for different achievable operating points.

Each template in the pool produces a classification mapping
from the image X to the space {0, 1} at each image pixel. The fea-
ture logic design should solve the problem of taking these N tem-
plates fi : Xi → {0, 1}, to find the classifier F :

∏N
j=1 fi(Xi) →

{0, 1} produced by combining the outputs of the templates that op-
timizes detection at a given false alarm rate. In general, testing all

22N

distinct different combination rules Fj , j = 1, 2, . . . 22N

for
combining the simple templates is out of the question (for N = 5,

there are more than 22N 	 4.3 × 109 functions). Taking into ac-
count the probabilistic nature of the input, the problem is solved
by the Neyman-Pearson lemma[9]. Under hypotheses H0 and H1

on the input space χ, we have induced distributions P(yi|H0)
and P(yi|H1) on the feature space of bit-packed template outputs
y = f(χ). The ROC curve is spanned by 2N classifiers, each of
which is associated with one of the finite set of thresholds in the
set

Q = {ζi|ζi = P(H1|yi)/P(H0|yi), y ∈ f(χ)} (6)

where the thresholds are strictly ordered, so that ζi < ζi+1, i =
1, 2, . . . ||Q|| − 1. Our implementation of the above procedure
is as follows: we have a significant amount of labeled training
data, corresponding to pixels in regions of interest. We can reli-
ably extract accurate histograms for templates at ROI pixels and
their complements from the training images. The binary outputs
of the templates at each pixel are packed into a bit-vector that is
used directly as the binary representation of the integer index of
a histogram bin. The thresholds ζ are calculated using ratios on
the histograms in each bin, and sorted. For a given ROC operating
point (a selected value of ζ), the decision regions are generated
by labeling bins with the index of ζ, since each value of ζ has a
one-to-one association with classification confidence. A Boolean
representation of the binary decision rule is directly extracted from
the bin indices and simplified using efficient standard automatic
Boolean logic provers such as the Quinn-McCluskey method. We
store the classifiers on the ROC, and, to change operating point,
switch between these.
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Fig. 1. Summary of design process. Simple templates, some generic, and some hand-coded by designers, form a library. Test images are
processed with each template. The large pool of templates is pruned to maximize divergence between pixels in ROI and pixels not in each
ROI. The subset of templates are combined using a Boolean procedure to yield a parameterized set of operators that span an ROC.

3.2. Generic Template Design

In principle, given unlimited computing power and data, we can in-
clude every plausible structuring element in the original template
library. In practice, we find good performance for our surveil-
lance applications by using templates matched to coupled birth-
and-death processes. These are multi state systems where each
state transition produces random samples corresponding to interval
lengths as in Figure 2. For scenes imaging relatively few agents,
the model is a reasonable description of the scan-lines at differ-
ent orientations. The template pool then consists of simple open-
ings and closings using line elements of different angles, sizes and
spacing.

A full analysis of the statistical behavior of these processes
under morphology is beyond the space limitations of the current
paper. We use a simple example for motivation: it shows that mor-
phological primitive operations matched to such sequences can en-
code complicated joint statistics into marginal distributions of the
output sequences, which can then easily be separated by a second
series of basic templates. Hence, higher order statistics can be de-
tected and exploited by the operator combinations our approach
provides.

Consider the process shown in Figure 2. It produces events
consisting of three positive pulses of fixed size α0 separated by
two notches of possible sizes β0 and β1. The joint distribution on
the notch configuration is pij = P (βi, βj), i, j = 0, 1. Figure 2
shows as the effect of closing the sequences with operators of size
γ1, where β0 ≤ γ1 < β1 and γ2, where β1 ≤ γ2.

2Γ

Γ1
2Γ

Γ1

2Γ

Γ1

2Γ

Γ1

p00

p10

p01

p11

1

α0

β

β0

Fig. 2. Events produced by a two-state process where pulses of
constant width α0 are separated by two notches drawn from two
values, β0 and β1, after closing by operators of widths β0 < γ1 ≤
β1 and β1 ≤ γ2. The probability of a notch sequence (βi, βj) is
indicated by pij .

Figure 3 shows the marginal distributions p(α|γ) for the orig-
inal, as well as the closed sequences. It is clear that distinctive

α0 03α +2β0

03α +2β0

2α0+β0

1

α0

01

p11,p01,p10
p00

p11

p01,p10

p00

0 1 0β  + β  +3α 2β + 3α

p01,p10

Fig. 3. Encoding of joint statistics of β in the marginal distribution
of α after closing. (a) p(α), (b) p(α|γ1), (c) p(α|γ2). In each
case the dependence of the marginal distribution value on the joint
probability pij of the two notch sequence is shown.

marginal distributions appear in the regions between critical val-
ues of γ. In particular, modes appear depending on the joint distri-
bution of the notches. Since pulses deriving from a certain mode
can be detected via successive openings, it is possible to detect
events from a specific birth-death process based on both marginal
and joint statistics of β, by performing a sequence of closings, and
a subsequent set of openings. Similarly, separation on the basis
of the statistics of α can be performed using openings and subse-
quent closings. Specific forms of invariance result from choices of
templates; in this example it is not possible to separate processes
differing only in p01 and p10; as expected, since the library has
only symmetric templates (a line element). Using different spac-
ings and line elements, however, a form of frequency analysis and
a-symmetric processing is readily performed.

4. APPLICATIONS

The system has been tested on a number of industrial text detec-
tion tasks, where it replaced commercial OCR systems[10]. The
latter systems, optimized to document handling, perform poorly
on data characterized by high-speed, low resolution video, and
surveillance camera angles.

Our first application is license plates detection for vehicle con-
trol, which remains a challenge due to legal rulings worldwide that
require accurate detection under all weather conditions. Warping
is applied to remove perspective distortion, allowing for one set of
detectors to be applied uniformly across the image. Equalization
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and prefiltering is performed and grayscale images are mapped to
multiple bitplanes. The bitplanes are processed in parallel and out-
puts are combined across all planes and all templates. We pruned
the template pool from eighty elements and ultimately integrated
twenty templates, trained on 1000 video sequences.

The result on a typical image is shown in Figure 4. The top im-
age shows an original pre-filtered image at one wavelength before
quantization. The middle image shows each pixel color coded ac-
cording to the likelihood ratio between the two classes (the thresh-
old ζi). We found this visualization of confidence level to be very
useful as a design tool. The classifier found the most reliable fea-
tures to use to be the spaces, and combination of spaces between
the letters of the license plate, in contrast to our initial assumption
that the rectangular shape of the license plate would be the critical
feature. Figure 4(c) shows the per-pixel ROC curve achieved.

(a)

(b)

(c)
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Pf

P
d

Fig. 4. License plate detection. (a) Original image, after warping,
(b) posterior likelihood ratio, (c) ROC curve for individual license
plate pixels.

Figure 5 shows the results on a container identification prob-
lem, which is subject to significant lighting, clutter, and occlusion
problems. The challenge here is that the scaffolding moves across
the image and contains significant frequency overlap with the text.
Figure 5(a) shows a typical binarized image bitplane, while Fig-
ure 5(b) shows the confidence levels for different text lines. In this
case, the algorithm once again favors different combinations of
inter-character spacings, but also favors operators matching large
blocks of letter hits.

5. CONCLUSION

We presented a method for designing morphological detectors.
The approach uses a generic classifier to combine the outputs from
a large number of simple templates from a design pool. The ap-
proach avoids the need for the designer to struggle to combine
multiple classifiers, and allows for statistically setting the operat-
ing point based on image data.

(a)

(b)
Fig. 5. Container text detection. (a) Binarized original image, (b)
final confidence of text line centroid after grouping.
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