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ABSTRACT

This paper addresses the Small Sample Size (SSS) prob-
lem in Linear Discriminant Analysis (LDA) utilizing a so
called Two-Dimensional Fisher Discriminant Analysis (2D-
FDA) algorithm. As opposed to traditional LDA-based ap-
proaches, 2D-FDA is based on 2D image matrices rather
than 1D vectors so the image matrix does not need to be
transformed into a vector before feature extraction. The
between-class scatter and the within-class scatter is con-
structed using the original image matrices. The advantage
arising in this way is that the SSS problem existing in tradi-
tional linear discriminant analysis does not occur any more.
To test the performance of 2D-FDA with small number of
training samples, a series of experiments are conducted on
two public databases: ORL and Yale face database B. In
both two trials, the 2D-FDA outperforms the other linear
subspace methods when there are only very limited training
images for each subject.

1. INTRODUCTION

The past ten years witness the progress of the LDA-based
face recognition algorithms. LDA/FDA is theoretically one
of the best classification methods [1]. The two noted meth-
ods using FDA are Swets and Weng’s Discriminant Eigen-
features [2] for image retrieval and Belhumeur et al.’s Fish-
erface [3] for face recognition, they both achieve better re-
sults than Eigenface method [4]. Similar to Eigenface method,
both transform the 2D image matrix into a 1D vector before
feature extraction. However, the within-class scatter ma-
trix is almost singular after such a transform because the
number of training samples is so small compared with the
dimension of the image vector. This degeneration results in
great difficulty in solving the inverse of within-class scatter.

To solve the SSS problems, various schemes have been
proposed so far. In Swets and Weng’s Discriminant Eigen-
features and Belhumeur et al.’s Fisherface, they both used
a two stage PCA+LDA approach. Using PCA, the high di-
mensional face data is projected to a low dimensional space

and then LDA is performed in this PCA subspace. How-
ever, the discarded subspace may also encode some infor-
mation helpful for recognition, this removal may introduce
a loss of discriminative information. Chen et al. [5] sug-
gested that the null space spanned by the eigenvectors of
Sw with zero eigenvalues contains the most discriminative
information. A LDA method in the null space of Sw was
proposed, called N-LDA. However, as explained in [5], with
the existence of noise, when the training sample number is
large, the null space of Sw becomes small, so much dis-
criminative information outside this null space will be lost.
Another shortcoming is this approach involves computing
eigenvalue problem for a very high-dimension matrix.

Yu and Yang [6] proposed a new algorithm which in-
corporates the concept of null space. It first removes the
null space of the between-class scatter matrix Sb and seeks
a projection to minimize the within-class scatter (called Di-
rect LDA /DLDA). Because the rank of Sb is smaller than
that of Sw, removing the null space of Sb may lose part of
or the entire null space of Sw, which is very likely to be
full-rank after the removing operation.

Huang et al. [7] introduced a more efficient null space
approach. The basic notion is that the null space of Sw is
particularly useful in discriminating ability, whereas, that
of Sb is useless. They proved that the null space of the total
scatter matrix St is the common null space of both Sw and
Sb. Hence the algorithm firstly removes the null space of St

and projects the samples onto the null space of Sw. Then
it removes the null space of the between-class scatter in the
subspace to get the optimal discriminant vectors.

Wang and Tang [8] gave a random sampling LDA for
face recognition with small training sample. This paper ana-
lyzes that both Fisherface and N-LDA encounter respective
over-fitting problem for different reasons. To solve it, in
Fisherface, they apply random subspace to reduce the fea-
ture vector dimension to reduce the discrepancy. In N-LDA,
this problem can be alleviated by bagging, since each repli-
cate has a smaller number of training samples. A fusion
rule is adopted to combine these two kinds of random sam-
pling based classifiers. Recently, a Two Dimensional Princi-
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pal Component Analysis (2D-PCA)[9] method is proposed.
As opposed to traditional PCA-based approaches, 2D-PCA
is based on 2D image matrices rather than 1D image vec-
tors. However, like PCA, 2D-PCA is only good at image
representation rather than discrimination. When there are
large pose and illumination variations in face images, the
top eigenvectors in 2D-PCA does not models identity infor-
mation but these external variations.

In this paper, inspired by 2D-PCA, a 2D-FDA algorithm
is proposed for face recognition with small number of train-
ing samples. In 2D-FDA, the between-class scatter and the
within-class scatter is constructed using the image matri-
ces. In contrast to the between-class and within-class scat-
ter of FDA, the within-class scatter obtained by 2D-FDA is
not singular generally. As a result, the 2D-FDA has three
important advantages over the 2D-PCA, original FDA and
N-LDA. Firstly, the features are extracted using Fisher dis-
criminant analysis, not the PCA, thus the discriminating
ability is better than 2D-PCA. Secondly, it does not en-
counter SSS problem any more when the training sample
size is small. Thirdly, it takes full advantage of the discrim-
inative information in the face space, and does not discard
any subspace which may be valuable for recognition.

2. TWO DIMENSIONAL FISHER DISCRIMINANT
ANALYSIS

Let x denote an n-dimensional unitary column vector. The
idea is to project image A, an m × n matrix, onto x by the
following linear transformation: y = Ax. Thus, we obtain
an m-dimensional projected vector y, which is called the
projected feature vector of image A. How do we determine
the optimal project direction x? In fact, the discriminatory
power of the projection vector x can be measured by the
Fisher criterion [1], i.e., maximizing the between-class scat-
ter of the projected samples and meantime minimizing the
within-class scatter of the projected samples. It is known
that the scatter of the projected samples can be character-
ized by the trace of the covariance matrix of the projected
feature vectors. From this point of view, the Fisher criterion
is adopted as follows:

J(x) =
tr(PSb)
tr(PSw)

(1)

where PSb and PSw are the between-class covariance and
the within-class covariance of the projected samples, tr(PSb)
denotes the trace of PSb, tr(PSw) denotes the trace of
PSw.

Lemma 1 : Let Sb, Sw be the between-class and within-
class covariance of the original image matrix. The trace of
PSb, tr(PSb) = x

′
Sbx and the trace of PSw, tr(PSw) =

x
′
Swx.

Proof: Let M be the mean of all the training samples,
Mi be the mean of each class, M

p
be the mean of all the

projected samples, M
p

i be the mean of each projected class.
The between-class covariance of the projected samples,

PSb =E[(M
p

i −M
p
) (M

p

i −M
p
)T ]=E[(Mix−Mx) (Mix

−Mx)T ]= E[((Mi − M)x) ((Mi − M)x)T ].
Because the trace of a square matrix is the summation

of all the leading diagonal elements. For any two matrix,
Ar×s and Bs×r, we have:

tr(AB) = tr(BA),
Since, ∑r

i=1

∑s
j=1 aijbji =

∑s
j=1

∑r
i=1 bjiaij

So,
tr(PSb)=tr(E[((Mi − M)x) ((Mi − M)x)T ])

=tr(E[((Mi − M)x)T ((Mi − M)x)])
=tr(E[xT (Mi − M)T (Mi − M)x])
=E[xT (Mi − M)T (Mi − M)x]
=xT E[(Mi − M)T (Mi − M)]x
=xT Sbx

where Sb=E[(Mi−M)T (Mi−M)]. We have the same
steps for the proof of tr(PSw) = x

′
Swx, where Sw=E[(A−

Mi)T (A − Mi)|A ∈ Ci], Ci is the i-th class.
Therefore, the Fisher criterion in Eq.1 can be converted

into:

J(x) =
xT Sbx
x′Swx

(2)

The unitary vector x that maximizes Eq.2 is called the
optimal discriminating projection axis. In general, it is not
enough to have only one optimal projection axis. It is neces-
sary to select a set of projection directions, X = [x1, · · · , xd].
Note that Eq.2 has the standard form for 1D Fisher discrim-
inant analysis.

Theorem 1 : The Sw in 2D-FDA is not singular.
Proof : Since Sw=E[(A−Mi)T (A−Mi)|A ∈ Ci],

another form of Sw can be written as Sw = 1
N ΦT

SwΦSw,
where N is the total training number, ΦT

Sw = [φ1
Sw, φ2

Sw, · · ·
, φL

Sw], L is the total class number, φi
Sw = [(A1

i−Mi)T , (A2
i−

Mi)T , · · · , (ALi
i − Mi)T ], i = 1, · · · , L. Li is the number

of training samples in i-th class. Mi is the mean of each
class. Ai

j , j = 1, · · · , Li, is the j-th training sample in

the i-th class. The dimension of ΦT
Sw is n × (m

∑L
i=1 Li),

where m and n are the image height and width. Since
rank(ΦT

SwΦSw) = rank(ΦSwΦT
Sw) = rank(ΦT

Sw) and rank
(ΦT

Sw) = n1, additionally, the dimension of Sw is n × n,
we can conclude that Sw is of full rank.

1It is known that rank(ΦT
Sw) ≤ min(n, m

�L
i=1 Li) and n �

(m
�L

i=1 Li) in the area of visual pattern recognition, there is,
rank(ΦT

Sw) ≤ n. Further, we take an assumption that the rows of ΦT
Sw

are independent of each other (the experiment results will demonstrate that
this assumption can be well satisfied in the benchmark databases), it can
be obtained that rank(ΦT

Sw) = n
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The optimal projection vectors Xopt can be obtained by
directly solving the following generalized eigen-system.

S−1
w SbXopt = ΛXopt (3)

where Λ is the diagonal matrix whose diagonal elements are
eigenvalues of S−1

w Sb.

3. FEATURE EXTRACTION

The optimal projection features of 2D-FDA, x1, · · · , xd, are
used for feature extraction. For a given image sample A, let

yk = Axk, k = 1, 2, · · · , d. (4)

Then we obtain a family of projected feature vectors,
y1, · · · , yd, which are called Fisher feature vectors of the
sample image A. These Fisher feature vectors are used to
form an m × d Fisher feature matrix B = [y1, · · · , yd].

4. CLASSIFICATION METHOD

After a transformation by 2D-FDA, a Fisher feature matrix
is obtained for each image. Then, a nearest neighbor clas-
sifier is used for classification. Here, the distance between
two arbitrary Fisher feature matrices, Bi = [yi

1, · · · , yi
d]

and Bj = [yj
1, · · · , yj

d], is defined by

dist(Bi,Bj) =
d∑

k=1

‖yi
k − yj

k‖2 (5)

where ‖yi
k − yj

k‖2 denotes the Euclidean distance between
the two Fisher feature vectors yi

k and yj
k.

Suppose that the training samples are B1, · · · , BM (where
M is the total number of training samples), and that each of
these samples is assigned a given identity (class) Ck. Given
a test sample B, if dist(B, Bl) = minM

i=1 dist(B, Bi), and
Bl ∈ Ct, then the resulting decision is B ∈ Ct.

5. PRINCIPAL COMPONENT ANALYSIS OF THE
FISHER FEATURE MATRIX

From the above classification step, we can see that the com-
putation load for 2D-FDA is much heavier than 1D-LDA.
To reduce computation time, the Fisher feature matrix are
further condensed by PCA. In the classification step, the
feature vectors extracted from PCA of the Fisher feature
matrix are used. The whole procedure for the PCA of the
Fisher feature matrix and classification is listed as follows:

1. Transform the corresponding Fisher feature matrix,
Bi, for each image, Ai into a 1D feature vector.

2. Apply PCA to all the 1D feature vectors and obtain a
subspace consisting of a set of eigenvectors.

3. Project all the 1D feature vectors onto the subspace,
finally a lower-dimensional feature vector is obtained for
each image.

4. Recognition using nearest neighbor classifier on the
finally acquired lower-dimensional feature vectors.

6. EXPERIMENTS AND ANALYSIS

The proposed 2D-FDA method is used for face recogni-
tion and tested on two well-known face image databases
(ORL, Yale face database B[10]). The ORL database is used
to evaluate the performance of 2D-FDA under conditions
where the pose, face expression, face scale vary. The Yale
face database B is used to examine the system performance
when illumination varies extremely.

6.1. Experiments on the ORL Database

The ORL database (http://www.cam-orl.co.uk) contains im-
ages from 40 individuals, each providing 10 different im-
ages. The facial expressions and facial details (glasses or
no glasses) also vary. The images were taken with a tol-
erance for some tilting and rotation of the face of up to 20
degrees. Moreover, there is also some variation in the scale
of up to about 10 percent. All images are grayscale and nor-
malized to a resolution of 46×56 pixels. Ten sample images
of two persons from the ORL database are shown in Fig.1.
We test the recognition performance with different training

Fig. 1. Ten sample images of two subjects in ORL database

numbers. k (2 ≤ k ≤ 9) images of each subject are ran-
domly selected for training and the remaining 10-k images
of each subject for testing. For each number k, 50 runs are
performed with different random partition between training
set and testing set. Fig.2 shows the average recognition rate.
The dimension for the Fisher feature matrix and Eigen fea-
ture matrix of 2D-FDA and 2D-PCA is 56×3. From Fig.2,
it can be seen that the performance of 2D-FDA is much bet-
ter than the other linear subspace methods, the superiority is
more obvious when the number of training sample is small.

6.2. Experiments on Yale Face Database B

This database contains 5760 images of 10 subjects each
seen under 576 viewing conditions (9 poses x 64 illumi-
nation conditions). Twenty sample images of two persons
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Fig. 2. Recognition rate on the ORL database

Fig. 3. Twenty sample images of two subjects in Yale face
database B

from the Yale face database B are shown in Fig.3. In our
experiment, altogether 640 images for 10 subjects are used
(64 illumination conditions under the same frontal pose).
The image size is 50×60. The recognition performance is
tested with different training numbers. k (2 ≤ k ≤ 12)
images of each subject are randomly selected for training
and the remaining 64-k images of each subject for testing.
For each number k, 100 runs are performed with different
random partition between training set and testing set. Fig.4
shows the average recognition rate. The dimension for the
Fisher feature matrix of 2D-FDA and Eigen feature matrix
of 2D-PCA is 60×22. But with the PCA of the Fisher fea-
ture matrix and the Eigen feature matrix, the dimension is
reduced to a vector with length of 639. From Fig.4, it can be
seen that 2D-FDA outperforms greatly the other linear sub-
space methods when the training sample number is small.

7. CONCLUSIONS

In this paper, a novel 2D-FDA algorithm for face recog-
nition is proposed. This method has great advantage over
the other linear LDA algorithms: Small sample size prob-
lem arising from few training samples does not exist any
more. In addition, the algorithm is very simple to be im-
plemented. The performance is much better than the cur-
rent LDA-based algorithms when there exist limited train-
ing samples for each class.
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Fig. 4. Recognition rate on the Yale face database B
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